Действия в позиционных системах счисления. Арифметические операции в различных системах счисления. Способы записи информации в компьютерной технике

Системы счисления

Система счисления – совокупность приемов и правил для записи чисел цифровыми знаками или символами.

Все системы счисления можно разделить на два класса: позиционные и непозиционные . В классе позиционных систем для записи чисел в различных системах счисления используется некоторое количество отличных друг от друга знаков. Число таких знаков в позиционной системе счисления называется основанием системы счисления. Ниже приведена таблица, содержащая наименования некоторых позиционных систем счисления и перечень знаков (цифр), из которых образуются в них числа.

Некоторые системы счисления

Основание Система счисления Знаки
Двоичная 0,1
Троичная 0, 1, 2
Четверичная 0, 1, 2, 3
Пятеричная 0, 1, 2, 3, 4
Восьмеричная 0, 1, 2, 3, 4, 5, 6, 7
Десятичная 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
Двенадцатеричная 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B
Шестнадцатеричная 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F

В позиционной системе счисления относительной позиции цифры в числе ставится в соответствие весовой множитель, и число может быть представлено в виде суммы произведений коэффициентов на соответствующую степень основания системы счисления (весовой множитель):

A n А n–1 A n–2 ...A 1 A 0 , A –1 A –2 ... =

A n B n + A n-1 B n-1 + ... + A 1 B 1 + A 0 B 0 + A –1 B –1 + A –2 B –2 + ...

(знак «,» отделяет целую часть числа от дробной. Таким образом, значение каждого знака в числе зависит от позиции, которую занимает знак в записи числа. Именно поэтому такие системы счисления называют позиционными).

Позиционная система счисления – система, в которой величина числа определяется значениями входящих в него цифр и их относительным положением в числе.

23,45 10 = 2 ⋅ 10 1 + 3 ⋅ 10 0 + 4 ⋅ 10 –1 + 5 ⋅ 10 –2 .

Десятичный индекс внизу указывает основание системы счисления.

692 10 = 6 ⋅ 10 2 + 9 ⋅ 10 1 + 2 ⋅ 10 0 ;

1101 2 = 1 ⋅ 2 3 + 1 ⋅ 2 2 + 0 ⋅ 2 1 + 1 ⋅ 2 0 = 13 10 ;

112 3 = 1 ⋅ 3 2 + 1 ⋅ 3 1 + 2 ⋅ 3 0 = 14 10 ;

341,5 8 = 3 ⋅ 8 2 + 4 ⋅ 8 1 + 1 ⋅ 8 0 + 5 ⋅ 8 –1 = 225,125 10 ;

A1F,4 16 = А ⋅ 16 2 + 1 ⋅ 16 1 + F ⋅ 16 0 + 4 ⋅ 16 –1 = 2591,625 10 .

При работе с компьютерами приходится параллельно использовать несколько позиционных систем счисления (чаще всего двоичную, десятичную, восьмеричную и шестнадцатеричную), поэтому большое практическое значение имеют процедуры перевода чисел из одной системы счисления в другую. Заметим, что во всех приведенных выше примерах результат является десятичным числом, и, таким образом, способ перевода чисел из любой позиционной системы счисления в десятичную уже продемонстрирован.



В общем случае, чтобы перевести целую часть числа из десятичной системы в систему с основанием В, необходимо разделить ее на В. Остаток даст младший разряд числа. Полученное при этом частное необходимо вновь разделить на В – остаток даст следующий разряд числа и т.д. Деления продолжают до тех пор, пока частное не станет меньше основания. Значения получившихся остатков, взятые в обратной последовательности, образуют искомое двоичное число.

Пример перевода целой части: Перевести 25 10 в число двоичной системы.

25 / 2 = 12 с остатком 1,

12 / 2 = 6 с остатком 0,

6 /2 = 3 с остатком 0,

Целая и дробная части переводятся порознь. Для перевода дробной части ее необходимо умножить на В. Целая часть полученного произведения будет первым (после запятой, отделяющей целую часть от дробной) знаком. Дробную же часть произведения необходимо вновь умножить на В. Целая часть полученного числа будет следующим знаком и т.д.

Для перевода дробной части (или числа, у которого «0» целых) надо умножить ее на 2. Целая часть произведения будет первой цифрой числа в двоичной системе. Затем, отбрасывая у результата целую часть, вновь умножаем на 2 и т.д. Заметим, что конечная десятичная дробь при этом вполне может стать бесконечной (периодической) двоичной.

Пример перевода дробной части: Перевести 0,73 10 в число двоичной системы.

0,73 ⋅ 2 = 1,46 (целая часть 1),

0,46 ⋅ 2 = 0,92 (целая часть 0),

0,92 ⋅ 2 = 1,84 (целая часть 1),

0,84 ⋅ 2 = 1,68 (целая часть 1) и т.д.

Таким образом: 0,73 10 = 0,1011 2 .

Над числами, записанными в любой системе счисления, можно производить различные арифметические операции. Арифметические операции во всех позиционных системах счисления выполняются по одним и тем же хорошо известным вам правилам.



Рассмотрим сложение двух чисел с основание десять:

При сложении числа 6 и 7 результат можно представить, как выражение 10 + 3, где 10, является полным основанием для десятичной системы счисления. Заменим 10 (основание) на 1 и подставим слева от цифры 3. Получится:

6 10 + 7 10 = 13 10 .

Рассмотрим сложение двух чисел с основание восемь:

При сложении числа 6 и 7 результат можно представить, как выражение 8 + 5, где 8, является полным основанием для восьмеричной системы счисления. Заменим 8 (основание) на 1 и подставим слева от цифры 5. Получится:

6 8 + 7 8 = 15 8 .

Рассмотрим сложение двух больших чисел с основание восемь:

Сложение начинается с младшего разряда. Итак, 4 8 + 6 8 представляем, как 8 (основание) + 2. Заменяем 8 (основание) на 1 и добавляем эту единицу к цифрам старшего разряда. Далее складываем следующие разряды: 5 8 + 3 8 + 1 8 представляем, как 8 + 1, заменяем 8 (основание) на 1 и добавляем ее к старшему разряду. Далее, 2 8 + 7 8 + 1 8 представляем, как 8 (основание) + 2, заменяем 8 (основание) на 1 и подставляем слева от получившегося числа (в позицию старшего разряда). Таким образом, получается:

254 8 + 736 8 = 1212 8 .

276 8 + 231 8 = 527 8 ,

4A77 16 + BF4 16 = 566B 16 ,

1100110 2 + 1100111 2 = 11001101 2 .

Другие арифметические операции (вычитание, умножение и деление) в различных системах счисления выполняются аналогично.

Рассмотрим умножение «столбиком», на примере двух чисел двоичной системы:

11101 2 · 101 2

Записываем числа друг под другом, в соответствии с разрядами. Затем производим поразрядное перемножение второго множителя на первый и записываем со смещением влево, так же, как при умножении десятичных чисел. Остается сложить «смещенные» числа, учитывая основание чисел, в данном случае двоичное.

преобразуем получившийся результат к основанию 16.

Во втором разряде 29 представляем, как 16 (основание) и 13 (D). Заменим 16 (основание) на 1 и добавим к старшему разряду.

В третьем разряде 96 + 1 = 97. Затем 97 представим, как 6 · 16 (основание) и 1. Добавим 6 старшему разряду.

В четвертом разряде 20 + 6 = 26. Представим 26, как 16 (основание) и 10 (А). Единицу переносим в старший разряд.

При определенных навыках работы с различными системами счисления запись можно было сразу представить, как

A
B B
A D

Таким образом, A31 16 · 29 16 = 1A1D9 16 .

527 8 – 276 8 = 231 8 ,

566B 16 – 4A77 16 = BF4 16 ,

11001101 2 – 1100110 2 = 1100111 2 ,

276 8 · 231 8 = 70616 8 ,

4A77 16 · BF4 16 = 37A166C 16 ,

1100110 2 · 1100111 2 = 10100100001010 2 .

С точки зрения изучения принципов представления и обработки информации в компьютере, обсуждаемые системы (двоичная, восьмеричная и шестнадцатеричная) представляют большой интерес, хотя компьютер обрабатывает данные только преобразованные к двоичному коду (двоичная система счисления). Однако, часто с целью уменьшения количества записываемых на бумаге или вводимых с клавиатуры компьютера знаков бывает удобнее пользоваться восьмеричными или шестнадцатеричными числами, тем более что, как будет показано далее, процедура взаимного перевода чисел из каждой из этих систем в двоичную очень проста – гораздо проще переводов между любой из этих трех систем и десятичной.

Представим числа различных систем счисления соответственно друг другу:

Десятичная Шестнадцатеричная Восьмеричная Двоичная
A
B
C
D
E
F

Из таблицы видно, что числа системы с основанием 2, 8 и 16 имеют периодические закономерности. Так, восемь значений восьмеричной системы, то есть (от 0 до 7 или полное основание) соответствуют трем разрядам (триады ) двоичной системы. Таким образом, для описания чисел одного разряда восьмеричной системы требуется ровно три разряда двоичной. Аналогично и с числами шестнадцатеричной системы. Только для их описания требуется ровно четыре разряда (тетрады ) двоичной системы.

Отсюда следует, что для перевода любого целого двоичного числа в восьмеричное, необходимо разбить его справа налево на группы по 3 цифры (самая левая группа может содержать менее трех двоичных цифр), а затем каждой группе поставить в соответствие ее восьмеричный эквивалент.

Например, требуется перевести 11011001 2 в восьмеричную систему.

Разбиваем число на группы по три цифры 011 2 , 011 2 и 001 2 . Подставляем соответствующие цифры восьмеричной системы. Получаем 3 8 , 3 8 и 1 8 или 331 8 .

11011001 2 = 331 8 .

Аналогично осуществляются и обратные переводы, например:

Перевести AB5D 16 в двоичную систему счисления.

Поочередно заменяем каждый символ числа AB5D 16 на соответствующее число из двоичной системы. Получим 1010 16 , 1011 16 , 0101 16 и 1101 16 или 1010101101011101 2 .

AB5D 16 = 1010101101011101 2 .

Кроме рассмотренных выше позиционных систем счисления существуют такие, в которых значение знака не зависит от того места, которое он занимает в числе. Такие системы счисления называются непозиционными . Наиболее известным примером непозиционной системы являетсяримская . В этой системе используется 7 знаков (I, V, X, L, С, D, М), которые соответствуют следующим величинам:

Правила записи чисел римскими цифрами : – если большая цифра стоит перед меньшей, то они складываются (принцип сложения), – если меньшая цифра стоит перед большей, то меньшая вычитается из большей (принцип вычитания).

Второе правило применяется для того, чтобы избежать четырёхкратного повторения одной и той же цифры. Так, римские цифры I, Х, С ставятся соответственно перед Х, С, М для обозначения 9, 90, 900 или перед V, L, D для обозначения 4, 40, 400.

Примеры записи чисел римскими цифрами:

IV = 5 - 1 = 4 (вместо IIII),

XIX = 10 + 10 - 1 = 19 (вместо XVIIII),

XL = 50 - 10 =40 (вместо XXXX),

XXXIII = 10 + 10 + 10 + 1 + 1 + 1 = 33 и т.д.

Следует отметить, что выполнение даже простых арифметических действий над многозначными числами римскими цифрами весьма неудобно. Вероятно, сложность вычислений в римской системе, основанной на использовании латинских букв, стала одной из веских причин замены ее на более удобную в этом плане десятичную систему.

3.1 Основанием системы счисления называется...

Совокупность приемов и правил для записи чисел цифровыми знаками или символами

Число знаков использующиеся в определенной позиционной системе счисления

Делитель, использующийся при переводе чисел из одной системы счисления в другую

Общий множитель, при переводе чисел из одной системы счисления в другую

3.2 Какая система счисления не нашла широкого применения в компьютерной технике

Восьмеричная

Двоичная

Пятеричная

Шестнадцатеричная

Арифметические операции в позиционных системах счисления

Арифметические операции во всех позиционных системах счисления выполняются по одним и тем же хорошо известным вам правилам.

Сложение. Рассмотрим сложение чисел в двоичной системе счисления. В его основе лежит таблица сложения одноразрядных двоичных чисел:

0 + 0 = 0
0 + 1 = 1
1 + 0 = 1
1 + 1 = 10

Важно обратить внимание на то, что при сложении двух единиц происходит переполнение разряда и производится перенос в старший разряд. Переполнение разряда наступает тогда, когда величина числа в нем становится равной или большей основания.

Сложение многоразрядных двоичных чисел происходит в соответствии с вышеприведенной таблицей сложения с учетом возможных переносов из младших разрядов в старшие. В качестве примера сложим в столбик двоичные числа 110 2 и 11 2:

Проверим правильность вычислений сложением в десятичной системе счисления. Переведем двоичные числа в десятичную систему счисления и затем их сложим:

110 2 = 1 × 2 2 + 1 × 2 1 + 0 × 2 0 = 6 10 ;

11 2 = 1 × 2 1 + 1 × 2 0 = 3 10 ;

6 10 + 3 10 = 9 10 .

Теперь переведем результат двоичного сложения в десятичное число:

1001 2 = 1 × 2 3 + 0 × 2 2 + 0 × 2 1 + 1 × 2 0 = 9 10 .

Сравним результаты - сложение выполнено правильно.

Вычитание. Рассмотрим вычитание двоичных чисел. В его основе лежит таблица вычитания одноразрядных двоичных чисел. При вычитании из меньшего числа (0) большего (1) производится заем из старшего разряда. В таблице заем обозначен 1 с чертой:

Умножение. В основе умножения лежит таблица умножения одноразрядных двоичных чисел:

Деление. Операция деления выполняется по алгоритму, подобному алгоритму выполнения операции деления в десятичной системе счисления. В качестве примера произведем деление двоичного числа 110 2 на 11 2:

Для проведения арифметических операций над числами, выраженными в различных системах счисления, необходимо предварительно перевести их в одну и ту же систему.

Задания

1.22. Провести сложение, вычитание, умножение и деление двоичных чисел 1010 2 и 10 2 и проверить правильность выполнения арифметических действий с помощью электронного калькулятора.

1.23. Сложить восьмеричные числа: 5 8 и 4 8 , 17 8 и 41 8 .

1.24. Провести вычитание шестнадцатеричных чисел: F 16 и А 16 , 41 16 и 17 16 .

1.25. Сложить числа: 17 8 и 17 16 , 41 8 и 41 16

Примечание:
Выполнять действия можно только в одной системе счисления, если вам даны разные системы счисления, сначала переведите все числа в одну систему счисления
Если вы работаете с системой счисления, основание которой больше 10 и у вас в примере встретилась буква, мысленно замените её цифрой в десятичной системе, проведите необходимые операции и переведите результат обратно в исходную систему счисления

Сложение:
Все помнят, как в начальной школе нас учили складывать столбиком, разряд с разрядом. Если при сложении в разряде получалось число больше 9, мы вычитали из него 10, полученный результат записывали в ответ, а 1 прибавляли к следующему разряду. Из этого можно сформулировать правило:

  1. Складывать удобнее «столбиком»
  2. Складывая поразрядно, если цифра в разряде > больше самой большой цифры алфавита данной Системы счисления, вычитаем из этого числа основание системы счисления.
  3. Полученный результат записываем в нужный разряд
  4. Прибавляем единицу к следующему разряду
Пример:

Сложить 1001001110 и 100111101 в двоичной системе счисления

1001001110

100111101

1110001011

Ответ: 1110001011

Сложить F3B и 5A в шестнадцатеричной системе счисления

FE0

Ответ: FE0


Вычитание:Все помнят, как в начальной школе нас учили вычитать столбиком, разряд из разряда. Если при вычитании в разряде получалось число меньше 0, мы то мы «занимали» единицу из старшего разряда и прибавляли к нужной цифре 10, из нового числа вычитали нужное. Из этого можно сформулировать правило:

  1. Вычитать удобнее «столбиком»
  2. Вычитая поразрядно, если цифра в разряде < 0, вычитаем из старшего разряда 1, а к нужному разряду прибавляем основание системы счисления.
  3. Производим вычитание
Пример:

Вычесть из 1001001110 число 100111101 в двоичной системе счисления

1001001110

100111101

100010001

Ответ: 100010001

Вычесть из F3B число 5A в шестнадцатеричной системе счисления

D9 6

Ответ: D96

Самое главное, не забывайте про то, что у вас в распоряжении только цифры данной системы счисления, так же не забывайте про переходы между разрядными слагаемыми.
Умножение:

Умножение в других системах счисления происходит точно так же, как и мы привыкли умножать.

  1. Умножать удобнее «столбиком»
  2. Умножение в любой системе счисления происходит по тем же правилам, что и в десятичной. Но мы можем использовать только алфавит, данный системы счисления
Пример:

Умножить 10111 на число 1101 в двоичной системе счисления

10111

1101

10111

10111

10111

100101011

Ответ: 100101011

Умножить F3B на число A в шестнадцатеричной системе счисления

F3B

984E

Ответ: 984E

Ответ: 984E

Самое главное, не забывайте про то, что у вас в распоряжении только цифры данной системы счисления, так же не забывайте про переходы между разрядными слагаемыми.

Деление:

Деление в других системах счисления происходит точно так же, как и мы привыкли делить.

  1. Делить удобнее «столбиком»
  2. Деление в любой системе счисления происходит по тем же правилам, что и в десятичной. Но мы можем использовать только алфавит, данный системы счисления

Пример:

Разделить 1011011 на число 1101 в двоичной системе счисления

Разделить F 3 B на число 8 в шестнадцатеричной системе счисления

Самое главное, не забывайте про то, что у вас в распоряжении только цифры данной системы счисления, так же не забывайте про переходы между разрядными слагаемыми.

НЕПОЗИЦИОННЫЕ

Непозиционные системы счисления

Непозиционные системы счисления появились исторически первыми. В этих системах значение каждого цифрового символа постоянно и не зависит от его положения. Простейшим случаем непозиционной системы является единичная, для которой для обозначения чисел используется единственный символ, как правило это черта, иногда точка, которых всегда ставится количество, соответствующее обозначаемому числу:

  • 1 - |
  • 2 - ||
  • 3 - |||, и т. д.

Таким образом, этот единственный символ имеет значение единицы , из которой последовательным сложением получается необходимое число:

||||| = 1+1+1+1+1 = 5.

Модификацией единичной системы является система с основанием, в которой есть символы не только для обозначения единицы, но и для степеней основания. Например, если за основание взято число 5, то будут дополнительные символы для обозначения 5, 25, 125 и так далее.

Примером такой системы с основанием 10 является древнеегипетская, возникшая во второй половине третьего тысячеления до новой эры. В этой системе имелись следующие иероглифы:

  • шест - единицы,
  • дуга - десятки,
  • пальмовый лист - сотни,
  • цветок лотоса - тысячи.

Числа получались простым сложением, порядок следования мог быть любым. Так, для обозначения, например, числа 3815, рисовали три цветка лотоса, восемь пальмовых листов, одну дугу и пять шестов. Более сложные системы с дополнительными знаками - старая греческая, римская. Римская также использует элемент позиционной системы - большая цифра, стоящая перед меньшей, прибавляется, меньшая перед большей - вычитается: IV = 4, но VI = 6, этот метод, правда, применяется исключительно для обозначения чисел 4, 9, 40, 90, 400, 900, 4000, и производных их сложением.

Новогреческая и древнерусская системы использовали в качестве цифр 27 букв алфавита, где ими обозначалось каждое число от 1 до 9, а также десятки и сотни. Такой подход обеспечил возможность записывать числа от 1 до 999 без повторений цифр.

В старорусской системе для обозначения больших чисел использовались специальные обрамления вокруг цифр.

В качестве словесной системы номерации до сих пор практически везде используется непозиционная. Словесные системы нумерации сильно привязаны в языку, и общие их элементы в основном относятся к общим принципам и названиям больших чисел (триллион и выше). Общие принципы, положенные в основу современных словесных нумераций вредполагают формирование обозначения посредством сложения и умножения значений уникальных названий.

| Информатика и информационно-коммуникационные технологии | Планирование уроков и материалы к урокам | 10 классы | Планирование уроков на учебный год (ФГОС) | Арифметические операции в позиционных системах счисления

Урок 15
§12. Арифметические операции в позиционных системах счисления

Арифметические операции в позиционных системах счисления

Арифметические операции в позиционных системах счисления с основанием q выполняются по правилам, аналогичным правилам, действующим в десятичной системе счисления.

В начальной школе для обучения детей счёту используют таблицы сложения и умножения. Подобные таблицы можно составить для любой позиционной системы счисления.

12.1. Сложение чисел в системе счисления с основанием q

Рассмотрите примеры таблиц сложения в троичной (табл. 3.2), восьмеричной (табл. 3.4) и шестнадцатеричной (табл. 3.3) системах счисления.

Таблица 3.2

Сложение в троичной системе счисления

Таблица 3.3

Сложение в шестнадцатеричной системе счисления

Таблица 3.4

Сложение в восьмеричной системе счисления

q получить сумму S двух чисел А и Б , надо просуммировать образующие их цифры по разрядам i справа налево:

Если a i + b i < q, то s i = a i + b i , старший (i + 1)-й разряд не изменяется;
если a i + b i ≥ q, то s i = а i + b i - q, старший (i + 1)-й разряд увеличивается на 1.

Примеры:

12.2. Вычитание чисел в системе счисления с основанием q

Чтобы в системе счисления с основанием q получить разность R двух чисел А и В , надо вычислить разности образующих их цифр по разрядам i справа налево:

Если a i ≥ b i , то r i = a i - b i , старший (i + 1)-й разряд не изменяется;
если a i < b i , то r i = a i - b i + g, старший (i + 1)-й разряд уменьшается на 1 (выполняется заём в старшем разряде).