Качественный усилитель для наушников на оу. Усилитель без усиления для наушников. Фотографии готовой конструкции

По результатам опроса победили ушники, собранные на «полупроводниках». Поэтому именно с них мы и начнем линейку конструкторов.

Я хотел бы начать с нескольких самых простых схемок. На роль конструктора они не годятся, но их рассмотрение возможно подведет нас к схеме, которую, на наш взгляд, имеет смысл положить в основу конструктора.


Итак, начнем.

В предыдущей статье мы уже говорили, что усилитель для наушников в первую очередь должен решать две основные задачи.

Во-первых, он должен разгружать выход источника сигнала. Работа аудиовыхода на низкоомную нагрузку приводит к резкому росту искажений (из-за высокой токовой нагрузки) и ухудшению АЧХ (завал на НЧ и иногда ВЧ). Использование буферного усилителя тока, предотвращает эти явления.

Во-вторых, для обеспечения нормальной громкости на высокоомных наушниках (и запаса по громкости на низкоомных), ушник должен иметь некоторое усиление по напряжению.

При использовании низкоомных наушников дополнительное усиление не всегда нужно. В таких случаях усилитель используется как токовый буфер. Иногда в этом качестве можно использовать самые простые схемы. Например такие как на рисунке. Это обычные повторители. Они могут быть собраны как на биполярных, так и на полевых транзисторах.


Самая примитивная схема слева. Простота - ее главное достоинство (возможно и единственное). Высокая нелинейность, высокое выходное сопротивление, очень низкая эффективность (даже по меркам схем в классе А) и пр. делают ее не очень интересной с практической точки зрения.

Имеет смысл немного ее усложнить. Заменим эмиттерный резистор на источник тока (схема справа). Такая схема уже вполне имеет право на жизнь. В ней можно достичь низкого выходного сопротивления, увеличить способность усилителя отдавать ток в нагрузку, значительно повысить линейность и т.д.

Стоит сказать несколько слов о нелинейности схемы с источником тока. В целом линейность не очень высока и зависит от тока покоя, сопротивления наушников и типа применяемого транзистора. Общий уровень гармоник может достигать десятых долей процента. Но спектр искажений благоприятный, короткий, с преобладанием второй гармоники. Например: при токе покоя 200мА (наушники 32 Ома), можно ожидать уровень второй гармоники порядка 0,1%, уровень третьей – 0,01% и нефиксируемость гармоник более высоких порядков. Звучать такой усилитель должен чисто.

При работе на высокоомные наушники (а часто и низкоомные) возникает необходимость усиления сигнала. Обеспечение запаса по громкости очень благоприятно сказывается на качестве воспроизведения. Рассмотрим простейшую схему. (см. рисунок)

Такие схемы иногда используют даже для работы с полноценной акустикой. Решение на любителя. Достоинствами схемы являются простота, и благоприятный спектр искажений (вторая гармоника). Окрашивание звука достаточно сильное, и его характер зависит от выбранного транзистора, тока покоя и сопротивления нагрузки. Любителям чистого, точного звука скорее всего не подойдет.

Высокий уровень гармоник является следствием неудовлетворительной работы каскада на низкоомную нагрузку. Если между выходом усилителя и наушниками поставить дополнительный буфер (например такой как рассмотрен в начале), то получим новую схему.

Линейность усилителя напряжения значительно возрастет, а звуковые характеристики всей схемы будут определяться, в основном, выходным буферным каскадом.

В большинстве случаев этой простой схемы хватит для согласования наушников с звуковой картой ноутбука. При этом качество воспроизведения вырастет.

Теперь поговорим о дальнейших путях улучшения характеристик усилителя.

Решать эту задачу можно «в лоб». Например, увеличением тока покоя или подбором более линейного транзистора. Заплатить за это придется соответственно усложнением и удорожанием. Также увеличатся и размеры. Таким методом можно значительно повысить характеристики, но есть и другие, менее прямолинейные способы улучшения.

Более распространенный способ повышения объективных параметров – значительное усложнение схемы, введение общей ОС. Схема остается компактной и экономичной, но сложной в повторении, сборке и наладке. При этом цена ее так же вырастет.

Поэтому, на наш взгляд, для конструктора не подходит ни один из этих вариантов. Им не хватает универсальности.

Более универсальным решением может стать схема с использованием ОУ с дополнительным буфером на выходе. Примерный вариант на рисунке.

Его главное свойство – очень чистое звучание. А именно таким, по нашему мнению, и должен быть транзисторный усилитель. А для приукрашенного звука лучше использовать гибридные усилители.

Сама схема оставляет некоторую свободу в настройке звука. Это и замена ОУ (менее шумящие, более/менее скоростные и т.д.). При желании, замена выходных транзисторов, выбор режима их работы (что сказывается на вносимых окрасках в звук).

Изменением запайки можно охватить ОС весь усилитель или только ОУ. Каждый из вариантов по-своему интересен. При охвате всего усилителя ОС достигается очень высокая линейность, суммарный коэффициент гармоник будет составлять тысячные доли процента. Исключение выходного буфера из петли ОС приведет к росту второй гармоники («благозвучные» искажения). Кроме этого, произойдут и некоторые другие изменения влияющие на звук. Вполне возможно, что кому то такой звук покажется интереснее. Ток покоя выходного каскада можно будет подбирать под требование используемых наушников (по умолчанию я бы выставил его равным 200мА).

Среди прочих достоинств такой схемы я бы отметил способность работать в широком диапазоне питающих напряжений (без каких либо настроек и изменений), простоту сборки и настройки.

Кому-то может оказаться полезным и то, что устройство без особых усилий можно превратить в высококачественный усилитель мощности (в классе А) работающий на акустику. Но это как говорится уже другая история (если кому-то это будет интересно, расскажу об этом отдельно).

Качество звука у такого ушника проверено и оно высокое. Похожая схема используется в усилителе внешний вид которого приводился на фотографиях сопровождавших все наши записи о конструкторе.

Как говорится, у меня все. Хотел бы узнать, что вы думаете обо всем этом?

С уважением, Константин М

Все статьи посвященные проекту "Гамма" можно найти через навигатор

Заказать конструктор усилителя "Гамма" можно у нас на сайте: АЛ "Философия Звука"


Сообщество для обсуждения конструкторов - "Электронные конструкторы" . Присоединяйтесь.

Усилитель без усиления, странно звучит не правда? Но тем не менее, про него пойдет речь.

Начну с не большой пред истории, купив новые наушники, стал замечать, что не хватает громкости, но не так, что бы сильно. Чисто в записях, на который низкий уровень громкости, хочешь добавить еще чуть - чуть, а уже предел. Да и субъективно, казалось, что звуковая карта стала звучать с ними, как то «сжато», низкие частоты оставляли желать лучшего. Думаю, с таким многие сталкивались.

Забегая вперед, могу сказать, что сам пришел к выводу, что усилитель для наушников, нужен. И даже не столько, как усилитель звука, он больше нужен для раскрытия потенциала наушников. В ходе сборки данного усилителя заметил, что наушники стали играть лучше, чем просто от входа звуковой карты. Возможно, сказывается, то что происходит некая «согласованность» относительно низкого сопротивления наушников, и выхода звуковой карты.

Сам усилитель, для наушников будет построен всего на одном ОУ (операционном усилителе), в данном случае на OPA2134 от burr brown. Так как напряжение источника сигнала особо усиливать не надо, то ОУ включается повторителем напряжения. Коэффициент усиления повторителя равен единице, или, сказать по - другому, никакого усиления и нет. Тогда зачем нужна такая схема? Здесь вполне уместно вспомнить, что существует транзисторная схема - эмиттерный повторитель, основное назначение которого согласование каскадов с различными входными сопротивлениями. Подобные каскады (повторители) называют еще буферными. Теперь становится понятно название «Усилитель без усиления».

Одним словом, в ходе выбора схемы решил сделать именно буфер, и да знаю, в единичном усилении включать ОУ, не сильно хорошо, но OPA2134 с этим справляется, так же как и NE5532, и TL072. Да и выходной ток для «раскачки» наушников достаточен. Там ведь особо много не надо? Ну 20мА, максимум 40мА, я не беру во внимание, особо чувствительные наушники.

Ниже схема самого буфера:

На схеме видно сам ОУ и буквально, не большую кучку деталей его обвязки. По входу стоит переменный резистор на 50Ком, далее за ним стоит по пленочному конденсатору С4 и С5 по 1.5 мкФ, можно поставить и более скажем 2.2 мкФ, что даже лучше. Резисторы R7, R8 и конденсаторы С2, С1 нужны, как своего рода фильтр, служащий защитой от проникновения радиочастот, да и шума с компьютера, может и не значительно, но пускай будет. Резисторы R5, R6 защита входа ОУ, лучше поставить, я их поставил по 100 Ом, но можно вплоть до 1 КОма. Резисторы R4, R3 защита выхода ОУ, можно ставить от 10-30 Ом, можно и больше, но зачем? Резисторы R1, R2, точнее их сопротивление не влияет на «единичность» усиления, лично я поставил 30 КОм, но можно и 47Ком поставить работать будет. Хотя ОУ и не самый скоростной 20 В/мкс, но тем не менее, питание на плате обвешал полностью. По 100 нФ и 1000 мкФ, от ножек минуса и плюса питания на землю, а также максимально близко к ОУ, между плюсом и минусом еще один конденсатор, на 100 нФ. Вот и все детали, буквально чуть - чуть.

В собранном виде выглядит эта платка буфера так:

Нужно еще обязательно подпаять проводок от массы на корпус резистора, что бы не было гула при касании к нему, я это сделал так:

Осталось сделать питание, особо с питанием возится не захотел, сделал его по стандартной схеме на LM7812 / LM7912. Единственное что подобрал стабилизаторы, что бы в плечах было более - менее похожие напряжения. Собственно схема:

Ни чего особенного, только добавил пару деталей, в виде варистора и помехоподавляющего конденсатора, параллельно входу трансформатора. В выпрямителе, применил диоды SF26, можно было и HER107. Да понимаю, вроде бы, а зачем? Можно ведь поставить что-то по проще, но на них цена, не сильно то и большая, да и нужно их не много. А на звук вроде влияет, так что поставил. Еще применил 2 предохранителя PTC 250 мА, чисто были. Решил для подстраховки поставить, можно не ставить.

Плата питания выглядит так, вышла довольно миниатюрной:

В результате этот буфер для наушников выглядит так:

Теперь собственно результат проделанной работы, фона нет в принципе, не слышно, чему был очень рад, после сборки:) Звук стал лучше, реально ощутил это, не то что бы он, как то красиво окрасился, чисто субъективно в нем добавилось низких и средних частот, да и сжатость прошла. Громкости мне сейчас хватает, как это не парадоксально от усилителя без усиления. Одним словом работой буфера доволен, при такой простой схеме его просто нужно попробовать собрать:) Тем более работает сразу, и настроек не каких производить не нужно. Советую тем, кто хочет услышать по новому свои наушники, но не хочет пока собирать, что-то сложное. Лично сейчас думаю как бы сделать к нему корпус.

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
Схема усилителя.
IC1 Операционный усилитель

OPA2134

1 В блокнот
С1, С2 Конденсатор 2200 пФ 2 В блокнот
С4, С5 Конденсатор 1.5 мкФ 2 В блокнот
С6, С7 1000 мкФ 2 В блокнот
С8-С10 Конденсатор 0.1 мкФ 3 В блокнот
R1, R2, R7, R8 Резистор

30 кОм

4 В блокнот
R3, R4 Резистор

20 Ом

2 В блокнот
R5, R6 Резистор

100 Ом

2 В блокнот
R9, R10 Переменный резистор 50 кОм 2 В блокнот
R, L Входной разьем 2 В блокнот
Разьем для наушников 1 В блокнот
Схема блока питания.
VR1 Линейный регулятор

LM7812

1 В блокнот
VR2 Линейный регулятор

LM7912

1 В блокнот
Выпрямительный диод

SF26

6 В блокнот
HL1, HL2 Светодиод 2 В блокнот
С11 Конденсатор 0.047 мкФ 1 В блокнот
С12, С13 Электролитический конденсатор 1000 мкФ 2 В блокнот
С14-С17 Конденсатор 0.1 мкФ 4
Чтобы получить качественный звук от мобильных устройств (смартфонов, mp3-плееров, планшетов и т.п.). Одна из основных характеристик любого мобильного устройства – время работы от батарей. Производители идут на любые ухищрения, чтобы снизить энергопотребление и увеличить время автономной работы гаджета. Поэтому усилитель звука в мобильном устройстве, как правило, имеет низкое напряжение на выходе (0,15-0,3В) и малую мощность.

Для канальных наушников с малым импедансом это не так уж важно – звучать они будут достаточно громко, но вот высокоомные (от 100 Ом) наушники ожидаемой громкости обеспечить не смогут, хотя чувствительность у них может быть даже больше. Почему так? Потому что чувствительность обычно указывается относительно мощности наушников – дБ/мВт. Т.е., при подаче 1 мВт на наушник чувствительностью 100 дБ, он даст на выходе именно такое звуковое давление – 100 дБ. Но что такое 1мВт для наушника с импедансом 8 Ом и 300 Ом? Согласно школьному курсу физики,


Из этого следует, что при импедансе 8 Ом для обеспечения мощности 1 мВт усилитель должен выдать сигнал амплитудой,

а чтобы обеспечить ту же мощность для наушников с импедансом 300 Ом, уже 0,5В. Если вспомнить, что выходной сигнал гаджета у нас ограничен 0,2-0,3 В, становится ясно, что от высокоомного наушника громкого звука ждать не приходится, хотя чувствительность у него вроде бы такая же, как у низкоомного.

Импеданс 16 Ом

Импеданс 16 Ом

Импеданс 300 Ом

Импеданс 300 Ом


Существует устойчивый миф, что хороший звук можно получить только на полноразмерных высокоомных наушниках. Это не так – сегодня существует множество низкоомных наушников (как вставных, так и полноразмерных) с отличными характеристиками.
Так зачем же нужны высокоомные наушники? Не проще ли перейти на низкоомные и забыть о всяких дополнительных усилителях?
Тоже не все так просто – при низком сопротивлении наушников через усилитель гаджета протекает больший ток. Для обычных усилителей это не так важно, но компактная электроника мобильных устройств повышенных токов не любит. Коэффициент нелинейных искажений на звуковом выходе гаджета может заметно вырасти с ростом тока за счет увеличения тепловыделения и нагрева полупроводниковых элементов, а также за счет возрастания тепловых шумов и дробных шумов, вносимых непроволочными резисторами. Кроме того, выходное сопротивление встроенных усилителей смартфонов часто бывает довольно высоким и оказывает заметное влияние на АЧХ низкоомных наушников.
Проще говоря, низкоомные наушники будут звучать громко, но звук может оказаться плохим даже на дорогих качественных моделях, а высокоомные наушники скорее обеспечат хорошее качество, но громкость их будет неудовлетворительной.


Поэтому для получения качественного звука с рядового смартфона наличие усилителя становится просто обязательным. Для многих mp3-плееров усилитель тоже потребуется – качество усилителя дешевых плееров зачастую не выше, чем у простых смартфонов.
Кроме улучшения качества звука усилитель еще и снизит энергопотребление мобильного устройства и, соответственно, продлит время автономной работы – для быстро разряжающихся современных смартфонов это немаловажный критерий.
Определившись с необходимостью усилителя, можно перейти к выбору конкретной модели по характеристикам. Покупать первый попавшийся усилитель не стоит, необходимо, чтобы он соответствовал мобильному устройству и, особенно, наушникам. Имеет смысл сначала определиться с выбором наушников, а уже затем (при необходимости) подобрать под них усилитель.

Характеристики усилителей наушников.


От исполнения зависит, сможете ли вы слушать музыку в дороге и на прогулке. Портативные усилители обычно имеют небольшие размеры и собственный автономный источник питания. Стационарные же больше габаритами и зачастую могут быть запитаны только от сети 220В. Зато многие такие усилители могут быть использованы для подзарядки мобильного устройства одновременно с проигрыванием музыки.


Вид схемотехники большинства современных усилителей – транзисторный. Транзисторы компактнее, экономичнее, прочнее и дешевле. Но ламповые усилители продолжают удерживать свои позиции благодаря большому количеству любителей «теплого лампового звука». Плюсы у ламп имеются:
- лучшая, чем у транзисторов, линейность, дающая гладкую АЧХ на простых схемах;
- лучшая устойчивость к перегрузкам, как при коротком замыкании выхода, так и при избыточной мощности входного сигнала. Перегруженный транзисторный усилитель портит звук сильнее лампового;
- не стоит недооценивать эстетический эффект лампового усилителя с открытыми лампами
Но АЧХ современных полупроводниковых усилителей давно не уступает ламповым, а минусы электронных ламп при использовании в усилителях заметно перевешивают плюсы. Это:
- высокий уровень тепловых шумов (каковой шум многие принимают за тот самый «ламповый звук»)
- недолговечность ламп из-за постепенного выгорания катода;
- высокая стоимость ламп и усилителей на них;
- низкая механическая прочность – лампы не выносят вибраций, при перевозке лампового усилителя лампы лучше вынуть и везти отдельно, соответствующим образом их упаковав;
- высокий коэффициент нелинейных искажений за счет использования выходного трансформатора;
Гибридные усилители с выходным каскадом на транзисторах имеют меньший коэффициент нелинейных искажений, но тепловой шум от ламп в них сохраняется, поэтому отношение сигнал/шум более 90 дБ ни в ламповых, ни в гибридных усилителях практически не встречается.

Выходная мощность усилителя определяет максимальную громкость, которую смогут выдать подключенные к нему наушники. Только надо иметь в виду, что производитель обычно указывает мощность при минимальном импедансе наушников. С ростом импеданса подключенных наушников мощность падает: так, усилитель, обеспечивающий 16 мВт с наушниками 16 Ом, на 300-омной нагрузке даст всего 0,8 мВт. Поэтому перед покупкой желательно выяснить, какую мощность усилитель обеспечивает при подключении к нему конкретных наушников. Мощность должна быть такой, чтобы обеспечивать на наушниках звуковое давление в диапазоне 105 – 115 дБ, что считается достаточно громким для большинства людей. Чтобы выяснить, будут ли наушники создавать нужное звуковое давление, следует посчитать его по формуле:


Так, при чувствительности наушников в 96 дБ/мВт и мощности усилителя 0,8 мВт для данных наушников, максимальное звуковое давление будет 95 дБ, что явно недостаточно.

Максимальное и минимальное сопротивление определяют диапазон, внутри которого должен быть импеданс используемых с этим усилителем наушников. При использовании наушников с импедансом, меньшим минимального, выросшие токи в усилителе могут привести к его повреждению. При подключении наушников с импедансом, большим максимального, звук будет слишком тихим.

Отношение сигнал/шум показывает, насколько сильно шумит усилитель при отсутствии сигнала. Чем выше этот показатель, тем более чистый звук обеспечивается системой. Для прослушивания музыки нежелательно, чтобы этот показатель был ниже 75 дБ. Hi-Fi аппаратура обеспечивает минимум 90 дБ, а высококачественные Hi-End усилители способны обеспечить отношение сигнал/шум в 110-120 дБ и выше.


Входы усилителя определяют, какие форматы получения сигнала он поддерживает, и какие разъемы потребуются для его подключения к мобильному устройству. Для получения аналогового аудиосигнала с гаджета используются «джеки» (jack) 2,5, 3,5, 6,35 мм и «тюльпаны» (RCA). Для получения цифрового аудиосигнала – SPDIF и USB. И в том и в другом случае необходимо, чтобы на мобильном устройстве был соответствующий разъем и, разумеется, поддержка возможности передачи аудио через него. Разнообразие различных входов, кроме поддерживаемого вашим мобильным устройством, не будет лишним: это позволит подключать к усилителю и другие устройства: ноутбук, автомагнитолу и т.д.


Отдельно следует отметить возможность получения аудиосигнала в цифровом виде. Это подразумевает наличие в усилителе собственного цифро-аналогового преобразователя (ЦАП) – модуля, преобразующего цифровые данные из аудиофайла в аналоговый сигнал для наушников. Это удорожает усилитель, но может благотворно сказаться на качестве звука. Дело в том, что в целях экономии производители мобильных устройств (особенно смартфонов) ставят на них недорогие низкоразрядные ЦАП, способные сильно исказить звук.
В этом случае высокое качество усилителя и наушников ничем не поможет – на них будет идти изначально некачественный сигнал. Поэтому, если вы не уверены в качестве комплектующих своего мобильного устройства (и если оно может отдавать звук в цифровом виде), выбирайте усилитель со встроенным ЦАП и цифровым входом.


Высокотехнологичный корпус из изоленты. Изначально плату делал под термоусадочную трубку - но буквально миллиметра не хватило, не влезло. Ну, тем не менее, мне нравится.

Цена вопроса

Кусочек одностороннего текстолита: 2 рубля
MAX9724 - 7.78 рублей
4 резистора - 0.07*4 = 0.28 рубля
Конденсаторы - 0 (даже если покупать, ~30 рублей макс.)
Разъемы - 0 (если покупать, ~20-30 рублей)
Изолента для хайтек корпуса - 1 рубль

Итого - это ровно 11.06 рубля для меня, и порядка 61.06 рублей если все покупать:-)

Результаты

Конечно, я сразу наткнулся на известную проблему: при работе с аудио к одной земле нельзя подключаться в двух местах (земля USB и земля звукового разъема). В этом случае по земле пролазят помехи, которые отфильтровать невозможно, и никакой стабилизатор питания тут не поможет. (проблема в том, что у USB - свой уровень земли, у звука - свой, и у нашей платы свой. В зависимости от потребляемого тока земля приподнимается везде по разному и это дает неустранимую помеху).

Решить эту проблему можно или избавившись от звукового подключения (USB DAC) или от питания (аккумулятор или другой блок питания). Использование блока питания с USB выходом меня полностью устроило в связи с тем что они везде есть и стандартны.

Конечный результат - выше любых ожиданий. Никаких нареканий на качество, абсолютный 0 шума, комфортный уровень громкости - от 22 до 40%, и запас для «вытягивания» тихих записей. Звук смачнее (главное помнить, что басы тут от 0Гц) и все такое, да и вообще - аудиодевайсы сделанные своими руками всегда особенно хорошо звучат:-)

От готовых китайских девайсов (вроде того-же FiiO E3) отличает более низкая цена (sic!), сборка с комплектующими «с запасом», отсутствие конденсаторов в аудио тракте, большая мощность при работе с высокоомными наушниками (300 Ом) за счет более высокого напряжения питания ну и качество звука в теории обещает быть выше (на практике я бы вероятно не услышал разницы).

PS. Как я выше упоминал - усилитель нужен не для того чтобы портить себе слух сверхвысокой громкостью (не говоря уже о порванных наушниках ), а для раскачки «тяжелых» наушников с низкой чувствительностью, если выход звуковой карты слишком дохлый. Ну и тихие записи / фильмы вытягивать без софта…

PS2. Отрыв плюсов от «добавлено в избранное» в 4 раза, рекорд:-)

В связи с приобретением новой звуковой карты без выхода на наушники, у меня возникла потребность в усилителе для наушников приличного качества, способном раскачать мои любимые ТДС-4. Усилитель должен был быть компактным, простым в сборке и налаживании, с низким уровнем шумов и искажений. В итоге, собранный усилитель соответствовал всем указанным выше требованиям.

Характеристики усилителя измерялись с помощью программы RMAA 6. Был испытан макет одного канала (программа работала в режиме МОНО), результаты измерений:

Неравномерность АЧХ (в диапазоне 40 Гц – 15 кГц), дБ: +0.05, -0.74

Уровень шума, дБ (А): -90.9

Динамический диапазон, дБ (А): 90.9

Гармонические искажения, %: 0.0014

Интермодуляционные искажения + шум, %: 0.010

Интермодуляции на 10 кГц, %: 0.0084

Усилитель построен по схеме ОУ + выходной транзисторный буфер. ОУ обеспечивает высокий коэффициент усиления разомкнутой петли обратной связи, необходимый для подавления нелинейных искажений с помощью глубокой ООС. Выходной буфер выполняет усиление по току, согласуя низкое сопротивление катушки наушника с маломощным выходом ОУ. В схеме используется сдвоенный быстродействующий ОУ К574УД2. Сигнал от источника через разделительный конденсатор C3 и резистор R1 поступает на неинвертирующий вход ОУ. Резистор R4 задает рабочую точку усилителя по постоянному току. Элементы C1,C2,R2,R3 обеспечивают частотную коррекцию ОУ. Выходной буфер выполнен по «параллельной» схеме. Данная схема была выбрана, потому что в ней отсутствуют переходные искажения, характерные для обычных двухтактных схем. При использовании транзисторов с близкими параметрами, падения напряжения на переходах база-эмиттер транзисторов пред оконечного и оконечного каскадов взаимно компенсируются. Транзисторы буфера, будучи установлены на общий теплоотвод, взаимно термостабилизируют друг друга. ОУ и буферный каскад охвачены общей 100% ООС по постоянному и переменному току, коэффициент усиления схемы равен 1.

Конденсатор C3 желательно использовать пленочный. C1,C2,C6,C7 – керамические. Все резисторы типа МЛТ-0,125 (или импортные аналоги). Транзисторы VT1 КТ315Г, VT2 КТ361Г, VT3 КТ815Г, VT4 КТ814Г. Предпочтительнее будет использовать в качестве VT1 и VT2 транзисторы КТ815Г и КТ814Г, из соображений идентичности параметров и возможности легко организовать тепловой контакт всех четырех транзисторов буфера. ОУ возможно заменить на любой другой быстродействующий с соответствующим изменением набора корректирующих элементов и разводки печатной платы. Усилитель питается от двухполярного нестабилизированного источника питания. В источнике питания используется трансформатор 220/20 с отводом от средней точки вторичной обмотки. Диодный мост любой на напряжение 50В и ток до 1А. Возможно использовать диоды серий 1N4001-1N4007. Емкость конденсаторов C4,C5 не менее 1000 мкФ (я использовал 4700 мкФ)

Правильно собранный усилитель налаживания не требует. Необходимо проверить потребляемый ток (порядка 30 мА для двухканального усилителя) и постоянное напряжение на выходе.

Детали усилителя и источника питания размещаются на общей плате размером 35х78мм. Транзисторы каждого канала крепятся через изоляционные прокладки к общему П-образному теплоотводу. Площадь теплоотвода несущественна, главное чтобы он обеспечивал тепловой контакт транзисторов.

Печатная плата однослойная с перемычками, разведена в Sprint Layout 5. В авторском варианте использовался нефольгированный текстолит, детали устанавливались в отверстия, выводы соединялись медной проволокой.

Литература:

Усилительный блок любительского радиокомплекса. А. Агеев, Радио №8 1982г.

The Sapphire Desktop Headphone Amplifier – http://phonoclone.com/diy-sapp.html