Сервопривод - что это такое? Устройство, подключение, принцип работы, назначение. Строение шаговых двигателей. Управление шаговым приводом

Асинхронные серводвигатели получили широкую известность за свою непритязательность к условиям работы и технологичность. Обладают небольшой массой, скромными габаритами и привлекательной себестоимостью, легки в обслуживании. Такое электрооборудование выгодно выделяется. В 90-е годы начинается активное применение синхронных сервомоторов, но и сейчас асинхронный серводвигатель сохраняет свою долю в массовом использовании, особенно в промышленности.
Более углубленное изучение нелинейных систем элементы которых перемещаются друг относительно друга было бы очень долгим. Токи, потокосцепления, напряжения представляют собой изменяемые векторные величины. Они называются частота, амплитуда и фаза. Всё это изучается в теории электрических машин.
Асинхронным двигателям свойственна значительная нелинейность. Магнитный поток и намагничивающий ток связаны между собой. Сопротивления роторной цепи определяются температурой и частотой.

Чтобы определить нагрузку асинхронного серводвигателя, требуется помимо сопротивлений схемы замещения ещё знать и другие переменные. Потребуются напряжения, частоты, скольжения.
Чтобы выполнять дальнейшие расчёты с изучением и прогнозированием режимов работы следует знать математические выражения зависимости скольжения и внутренних параметров, а также режимов его работы.
Для частотно-управляемого торможения тормозной режим работы так же важен как двигательный. Допускается применять механику, при этом частотное управление позволяет осуществлять торможение привода с помощью электричества, а это во многом выгоднее.
Асинхронный серводвигатель возможно применять в качестве двигателя, либо в трёх режимах торможения. Эти три режима различаются между собой тем как движутся потоки энергии. У них разное направление.
Режим двигателя предполагает передачу мощности от источника электроэнергии к валу двигателя. Магнитное поле при этом вращается и дублирует направление вала машины. Скорость вращения поля больше скорости вращения вала.
Чтобы управлять асинхронным серводвигателем, не производят регулировку напряжения статора, вместо этого, его(напряжение) меняют вместе с частотой напряжения, которое подаётся на статор. При этом основными параметрами являются U/F и U/(F в квадрате). В преобразователе частоты или сервоприводе выбирается вид характеристики по которой управляется серводвигатель.
Чтобы создать синусоидальный ток статор применяют скалярный и векторный способ формирования напряжения. Самым выгодным является векторный режим. Он даёт возможность получить увеличенную амплитуду входного напряжения, по сравнению со скалярным.
Управление напряжением статора ведёт больше не к регулированию крутящего момента, а скорее к изменению статического запаса крутящего момента.
Дополнительно планирую рассмотреть ремонт серводвигателей в домашних условиях и процесс работы в специализированных организациях.

Несмотря на то, что автоматизированные системы управления вошли в наш быт, далеко не всем известно про сервопривод. Что это такое? Он представляет собой систему, реализующую высокоточные динамичные процессы. Устройство состоит из двигателя, датчика и блока управления, обеспечивающих отработку требуемых скорости, позиции и момента.

К сервоприводам относятся различные усилители и регуляторы, но термин больше применяется в автоматических системах при обозначении электропривода с отрицательной обратной связью по положению. Основой является корректировка работы электродвигателя при подаче управляющего сигнала.

Как устроен сервопривод

Что это такое, легче понять, если рассмотреть конструкцию и работу устройства. Электромеханический узел сервопривода размещается в одном корпусе. Его характеристиками являются конструкция, рабочее напряжение, частота и крутящий момент. По показаниям датчика от контроллера или микросхемы поступает сигнал на корректировку работы серводвигателя.

Простейшее устройство представляет собой электродвигатель постоянного тока, схему управления и потенциометр. Конструкция предусматривает наличие редуктора, чтобы получить заданную скорость перемещения выходного вала.

Схема управления

Подключение сервопривода можно производить с помощью простой схемы с таймером NE555 в режиме генератора импульсов.

Положение вала двигателя определяется шириной импульса, которая устанавливается переменным резистором R 1 . Сигналы должны подаваться генератором непрерывно, например каждые 20 мсек. При поступлении команды (перемещение движка резистора) выходной вал редуктора поворачивается и устанавливается в определенное положение. При внешнем воздействии он будет сопротивляться, пытаясь оставаться на месте.

Механическое регулирование системы отопления

Сервопривод - что это такое? Это хорошо понятно по его работе в системе теплого пола как приспособления, регулирующего поток теплоносителя. Если это делать вручную, придется непрерывно крутить вентили на коллекторах, поскольку расход горячей воды, подаваемой в обогревающие контуры, является переменной величиной.

Для автоматического регулирования систем теплого пола применяются разные устройства. Простейшим является термоголовка, устанавливаемая на регулирующий клапан. Она состоит из ручки механической настройки, пружинного механизма и сильфона, соединенного с толкателем. При повышении температуры внутри сильфона нагревается толуол, который при этом расширяется и давит на шток клапана, закрывая его. Поток теплоносителя перекрывается, и он начинает остывать в отопительном контуре. При охлаждении до заданного уровня сильфон снова открывает клапан, и новая порция горячей воды поступает в систему.

Механические регуляторы устанавливаются на каждый контур теплого пола и настраиваются вручную, после чего температура автоматически поддерживается постоянной.

Электрический сервопривод для отопления

Более совершенным устройством является электрический сервопривод для отопления или теплого пола. Он включает систему взаимосвязанных механизмов, обеспечивающих поддерживание температуры воздуха в помещении.

Сервопривод для отопления работает вместе с термостатом, который монтируется на стену. Кран с электроприводом устанавливается на подающей трубе, перед коллектором водяного теплого пола. Затем производится подключение, подача питания 220 В и установка на терморегуляторе заданного режима. Система снабжается двумя датчиками: один - в полу, а другой - в комнате. Они передают команды на термостат, который управляет сервоприводом, соединенным с краном. Точность регулирования будет выше, если установить еще прибор на улице, поскольку климатические условия постоянно меняются и влияют на температуру в помещениях.

Сервопривод управляет двух- или трехходовым клапаном. Первый изменяет температуру теплоносителя в системе отопления. Трехходовой клапан с сервоприводом поддерживает температуру постоянной, но изменяет расход горячей воды, подаваемой в контуры. Од содержит 2 входа для горячей жидкости (подающий трубопровод) и холодной (обратка). Выход всего один, через него подается смесь с заданной температурой. Клапан обеспечивает смешивание потоков, регулируя таким путем подачу тепла в коллекторы. Если один из входов открывается, то другой начинает прикрываться. При этом расход на выходе остается постоянным.

Сервопривод крышки багажника

Современные автомобили большей частью выпускаются с автоматическим открыванием и закрыванием багажника. Для этого требуется установка сервопривода. Производители применяют 2 способа, чтобы обеспечить авто подобной опцией. Надежным вариантом является пневмопривод, но он стоит дороже. Электропривод управляется несколькими способами на выбор:

  • с пульта;
  • кнопка на дверной панели водителя;
  • ручка на крышке багажника.

Ручное открывание не всегда удобное, особенно зимой, когда замок может замерзнуть. Сервопривод багажника совмещается с замком, что дополнительно защищает авто от несанкционированного проникновения.

Устройства применяются на иномарках, но при желании их можно установить на отечественных моделях. Предпочтительно использовать привод с электродвигателем.

Есть еще устройства с магнитными пластинами, но они сложней и применяются реже.

Самыми дешевыми являются электроприборы, предназначенные только для открывания. Можно подобрать привод багажника, состоящий из электродвигателя с инерционным механизмом, отключающийся при возникновении препятствия перемещению. Дорогие модели состоят из устройства подъема и опускания крышки, доводчика запорного механизма, контроллера и датчиков.

Установка и настройка сервопривода крышки багажника производятся на заводе, но простые устройства могут быть установлены своими руками.

Характеристики сервоприводов

Устройства выпускаются аналогового и цифрового типов. Приводы внешне ничем не отличаются, но различие между ними существенное. Последние обладают более точной отработкой команд, поскольку управление производится микропроцессорами. Для сервоприводов пишутся и вводятся программы. Аналоговые устройства работают от сигналов микросхем. Их преимуществами являются простое устройство и меньшая цена.

Основными параметрами для выбора являются следующие:

  1. Питание. Подача напряжения производится по трем проводам. По белому передают импульс, через красный - рабочее напряжение, черный или коричневый является нейтральным.
  2. Размеры: большие, стандартные и микроустройства.
  3. Скорость. От нее зависит, за какой промежуток времени вал повернется на угол 60 0 . Недорогие устройства обладают скоростью 0,22 сек. Если требуется высокое быстродействие, она составит 0,06 сек.
  4. Величина момента. Параметр является приоритетным, поскольку при малом вращающем моменте управление затрудняется.

Как управлять цифровым сервоприводом?

Приводы подключаются к программируемым контроллерам, среди которых хорошо известен Arduino. Подключение к его плате производится тремя проводами. По двум подается питающее напряжение, а по третьему - управляющий сигнал.

Инструкция сервопривода с цифровым управлением предусматривает наличие в контроллере простой программы, позволяющей считывать с потенциометра показания и переводить их в число. Затем оно преобразуется в команду передачи на поворот вала сервопривода в заданное положение. Программа записывается на диске, а затем передается на контроллер.

Заключение

Мы подробно рассмотрели сервопривод. Что это такое, станет понятным, когда потребуется автоматизация различных процессов, где требуется поворачивать и удерживать в заданном положении вал электродвигателя. Устройства выпускаются аналоговые и цифровые. Последние нашли более широкое применение благодаря высокому уровню разрешения, большой мощности и точности позиционирования.

Что такое шаговый электродвигатель и принцип его работы:

Шаговый электродвигатель - это синхронный бесщёточный электродвигатель с несколькими обмотками, в котором ток, подаваемый в одну из обмоток статора, вызывает фиксацию ротора. Последовательная активация обмоток двигателя вызывает дискретные угловые перемещения (шаги) ротора.

Шаговые двигатели можно отнести к группе бесколлекторных двигателей постоянного тока. Шаговые двигатели, имеют высокую надежность и большой срок службы, что позволяет использовать их в индустриальных применениях. При увеличении скорости двигателя, уменьшается вращающийся момент.
Шаговые двигатели делают больше вибрации, чем другие типы двигателей, поскольку дискретный шаг имеет тенденцию хватать ротор от одного положения к другому. За счет этого шаговый двигатель во время работы очень шумный. Вибрация может быть очень сильная, что может привести двигатель к потери момента. Это связано с тем, что вал находится в магнитном поле и ведет себя как пружина. Шаговые двигатели работают без обратной связи, то есть не используют Энкодеры или резольверы для определения положения.
Типы:
Существует четыре главных типа шаговых двигателей:

  • Шаговые двигателя с постоянным магнитом
  • Гибридный шаговые двигателя
  • Двигатели с переменным магнитным сопротивлением
  • Биполярные и униполярные шаговые двигатели

Преимущества Шагового двигателя:

  • Устойчив в работе
  • Работает в широком диапазоне фрикционных и инерционных нагрузок и скоростей, скорость пропорциональна частоте входных импульсов.
  • Нет необходимости в обратной связи
  • Намного дешевле других типов двигателей
  • Подшипники - единственный механизм износа, за счет этого долгий срок эксплуатации.
  • Превосходный крутящий момент при низких скоростях или нулевых скоростях
  • Может работать с большой нагрузкой без использования редукторов
  • Двигатель не может быть поврежден механической перегрузкой
  • Возможность быстрого старта, остановки, реверсирования

Главным преимуществом шаговых приводов является точность. При подаче потенциалов на обмотки, шаговый двигатель повернется строго на определенный угол. Шаговый привод, можно приравнять к недорогой альтернативе сервоприводу, он наилучшим образом подходит для автоматизации отдельных узлов и систем, где не требуется высокая динамика.

Недостатки шагового двигателя:

  • Постоянное потребление энергии, даже при уменьшении нагрузки и без нагрузки
  • У шагового двигателя существует резонанс
  • Из-за того что нет обратной связи, можно потерять положение движения.
  • Падение крутящего момента на высокой скорости
  • Низкая ремонтопригодность

Применение.
Шаговые двигателя имеет большую область применения в машиностроении, станках ЧПУ, компьютерной технике, банковских аппаратах, промышленном оборудовании, производственных линиях, медицинском оборудовании и т.д.

Что такое серво двигатель и принцип его работы:

Серводвигателя делятся на категории щеточные (коллекторные) и без щеточные (без коллекторные) . Щеточные (коллекторные) серводвигатели могут быть постоянного тока, без коллекторные серводвигатели могут быть постоянного и переменного тока. Серводвигатели с щетками (коллекторные), имеют один недостаток каждые 5000 часов необходима замена щеток. На серводвигателях всегда есть обратная связь, это может быть энкодер или резольвером. Обратная связь необходима, чтобы достичь необходимой скорости, либо получить нужный угол поворота. В случаях высоких нагрузок и если скорость окажется ниже требуемой величины, ток пойдет на увеличение, пока скорость не достигнет нужной величины, если сигнал скорости покажет, что скорость больше, чем нужно, ток, пойдет на уменьшение. При использовании обратной связи по положению, сигнал о положении можно использовать чтобы остановить двигатель, после того, как ротор двигателя приблизится к нужному угловому положению.
АС серводвигатель - двигатель переменного тока. В ценообразовании двигатель переменного тока дешевле двигателя постоянного тока. По принципу работы эти двигатели разделяются на синхронные и асинхронные двигатели и коллекторные.
В синхронных двигателях переменного тока ротор и магнитное поле вращается синхронно с одинаковой скоростью и в одном направлении с статором, а в асинхронных двигателях переменного тока ротор вращается несинхронно по отношению с магнитным полем. В асинхронном двигателе из-за отсутствия коллектора (щетки) регулировка оборотов происходит за счет изменения частоты и напряжения.

DC серводвигател ь - двигатель постоянного тока.
Серводвигатели постоянного тока из за своих динамических качеств могут быть использованы приводом непрерывного действия. Серводвигатели постоянного тока могут постоянно работать в режимах старт, остановка и работать в обоих направлениях вращения. Обороты и развиваемый крутящий момент можно изменять путем изменения величины напряжения тока питания или импульсами.

Преимущества серводвигателей:

  • При малых размерах двигателя можно получить высокую мощность
  • Большой диапазон мощностей
  • Отслеживается положение, за счет использования обратной связи
  • Высокий крутящий момент по отношении к инерции
  • Возможность быстрого разгона и торможения
  • При высокой скорости, высокий крутящий момент
  • Допустимый предел шума при высоких скоростях
  • Полное отсутствия резонанса и вибрации
  • Точность позиционирования
  • Широкий диапазон регулирования скорости.
  • Точность поддержания скорости и стабильность вращающего момента.
  • Высокий статический момент Мо при нулевой скорости вращения.
  • Высокая перегрузочная способность: Mmax до 3.5Mo, Imax до 4Io
  • Малое время разгона и торможения, высокое ускорение (обычно > 5 м/с 2).
  • Малый момент инерции двигателя, низкий вес, компактные размеры.

Пример работы двигателя:
На данном примере я перескажу вам принцип работы серводвигателя. После того, как вы сгенерировали управляющую программу, она создается в системе G-кодов, то есть ваша линия, окружность или любой созданный вами объект конвертируется в перемещение по координатам X,Y, Z на определённое расстояние. За расстояние отвечают импульсы, которые подаются через блок управления на двигатель. При перемещении любой из осей, например на 100 мм, драйвер (блок управления) подает определённое напряжение на двигатель, вал двигателя (ротор). Вал двигателя соединен с ходовым винтом (ШВП), вращение оборотов двигателя отслеживается энкодер. При вращении ходового винта по любой из осей, потому что при использовании серво, энкодеры (обратная связь) устанавливаются на тех осях, где вы хотите определить положение, на энкодер подаются импульсы, которые считываются системой управления ЧПУ. Системы ЧПУ программируются так, что ни понимают что, например, для перемещения на 100 мм необходимо получить определенное количество импульсов. Пока система ЧПУ не получит нужное количество импульсов на вход драйвера (блока управления) будет подаваться напряжение задания (рассогласование). Когда портал станка проедет заданные 100 мм, система ЧПУ получит нужное количество импульсов и напряжение на входе драйвера упадет до 0 и двигатель остановится. Прошу вас заметить, что преимущество обратной связи в том, что если по какое то либо причине произойдет смещение портала станка, энкодер отправит на систему управления нужное количество импульсов, для подачи нужного напряжения на согласования драйвера (блока управления), и двигатель поменяет угол. Для того что разногласие было равно 0, это помогает удерживать станок в заданной точке с высокой точностью. Не все типы двигателей способны, обеспечивать динамику разгона, нужный крутящий момент и т. п.

Сравнительная характеристика по основным параметрам

Шаговые двигатели Серво двигателя

Срок эксплуатации и обслуживание

Шаговые двигатели – нет щеток, это увеличивает срок эксплуатации до многих лет, единственным слабым местом являются подшипники, могут работать в большом диапазоне высоких температур. Срок эксплуатации в разы дольше любого типа двигателя.

Из всех видов серво двигателей, самые дешевые это двигателя коллекторного типа (со щетками), они менее надежны, чем шаговые двигатели и требуют замены щеток примерно через 5000 часов непрерывной работы.
Другой тип бесколлекторных сервоприводов производятся по надежности как и шаговые двигателя, отсутствие щеток увеличивает срок эксплуатации, но не уменьшает стоимость ремонта. В некоторых случаях проще и дешевле купить новый двигатель, а не пытаться его отремонтировать.

Очень тяжело повредить и износить подшипник. Как и в любом двигателе возможно повреждение обмотки двигателя. Из низкой цены проще купить новый шаговый двигатель.

В некоторых случаях проще и дешевле купить новый двигатель, а не пытаться его отремонтировать.

Точность перемещений

При использование точных механизмов, может быть не ниже +/- 0.01 мм

сервоприводы имеют высокую динамическую точность до 1-2мкм и выше (1 мкм = 0.001 мм)

Скорость перемещения

В лазерно гравировальных станках скорость 20 – 25 метров в минуту. Если мы говорим о фрезерных станках ЧПУ с тяжелыми порталами и балками. Максимальная скорость перемещения до 9 м/мин.

С использованием сервоприводов в станках с ЧПУ возможно достижение скоростей до 60 м/мин при использование высокосортной механике.

Скорость разгона

до 120 об/мин за секунду

до 1000 об/мин за 0,2 секунды

Потеря шагов при повышении скорости и нагрузки

При высоких скоростях и высоких нагрузках происходит потеря шагов. Эта не проблема возможна при воздействии внешних факторов: ударов, вибраций, резонансов и т.п.

У серво двигателей присутствует обратная связь, что полностью исключает потерю шагов.

Принудительная остановка (столкновение с препятствием)

Принудительная остановка шагового двигателя не вызывает у него никаких повреждений

В случае принудительной остановки серводвигателя, драйвер мотора должен правильно среагировать на данную остановку. В противном случае по обратной связи подается сигнал на доработку не пройденного расстояния, повышается ток на обмотках, двигатель может перегреться и сгореть!

Разница в цене

По цене шаговый двигатель намного дешевле своего товарища серво двигателя.

Минимум в 1,5 раз дороже шагового двигателя.

Каждый тип двигателя предназначен для своей задачи. В некоторых случаях нужно использовать шаговых двигатель, а для некоторых задач необходимо использовать только серво двигатель. В фрезерных станках ЧПУ широко используются оба типа двигателей, просто у каждого из них есть свои задачи, и иногда не целесообразно переплачивать за серво, при небольших объемах производства.

Подведем черту сравнения серводвигателей и шаговых двигателей:

Как и было сказано раньше, шаговый двигатель не может вам дать высокую скорость и мощность и поэтому одно из его применений - в станках ЧПУ недорого сегмента, например фрезерных деревообрабатывающих станках с ЧПУ «АртМастер» 2112, 2515, 3015 базовой комплектации. Данный вид станков на средней скорости покроет большой ассортимент работ: обработки дерева, пластика, ДСП, МДФ, легких металлов и других материалов.

Если же вас не устраивают скоростные характеристики, Вам необходимо рассмотреть фрезерные деревообрабатывающие станки с ЧПУ «АртМастер» 2112, 2515, 3015(авт.) и высокоскоростной фрезерный деревообрабатывающий станок «АртМастер 3015 Racer» .

Вы всегда должны для себя понимать, что сервомоторы позволяют вам с экономить время на холостых переходах, при этом вы не должны забывать правильно оптимизировать количество проходов. Скорость фрезеровки всегда зависит от мощности режущего инструмента (электрошпинделя) и типа фрезы. Мы не сможете получить хорошую скорость фрезеровки при низком качестве инструмента. Вы получите либо брак в изделии, либо Вам потребуется постоянная замена режущего инструмента. То есть при использовании высоких скоростей, при обработке материала вы не должны забывать о качестве и типе

Современное высокотехнологичное оборудование предполагает использование элементов конструкции, позволяющих совершать постоянные динамические движения с постоянным контролем угла поворота вала, а также предоставлять возможность управления скоростями в электромеханических приборах. Решить весь комплекс подобного рода задач можно с помощью серводвигателей. Они представляют собой электротехническую систему привода, позволяющую эффективно осуществлять управление скоростями в требуемом диапазоне. Применение такого рода устройств дает возможность реализовать периодическую повторяемость процессов с высокой частотой. Серводвигатели являются инновационным вариантом электропривода, поэтому они получили широкое распространение в машиностроении и других отраслях промышленности. Подобные устройства сочетают в себе высокую эффективность в работе и низкий уровень шума.

Устройство серводвигателей

Конструкция серводвигателя предполагает наличие следующих элементов:

  1. Ротора;
  2. Статора;
  3. Комплектующих, предназначенных для коммутации (штекера или клеммные коробки);
  4. Датчика обратных связей (энкодера);
  5. Узла управления, контроля и коррекции;
  6. Система включения и выключения;
  7. Корпуса (в двигателях корпусного типа)

Главное конструктивное различие рассматриваемых устройств от обычных двигателей постоянного и переменного тока, комплектующихся щетками или без таковых, является возможность управления им путем изменения скорости вращения ротора, момента и положения.


Включаться и выключаться двигатель может с помощью системы механического (резисторы, потенциометры и т.д.) или электронного (микропроцессор) типа. В ее основе лежит принцип сравнения данных датчика обратной связи и заданного значения с подаваемым через реле на устройство напряжением. В более высокотехнологичных схемах также учитывается инерция ротора, вследствие чего обеспечивается его плавность разгона и торможения.

Концептуально все серводвигатели можно отнести к исполнительным системам высокой мощности для систем, станков и устройств точного позиционирования. Основной задачей серводвигателя является выставления исполнительного механизма точно в нужную точку пространства.

Принцип работы

Основным аспектом функционирования серводвигателей является условия его работы в рамках системы G-кодов , то есть команд управления, содержащихся в специальной программе. Если рассматривать данный вопрос на примере ЧПУ , то сервомоторы функционируют во взаимодействии с преобразователями, которые изменяют величину напряжения на якоре или на возбуждающей обмотке двигателя, исходя из уровня входного напряжения. Обычно управление всей системой производится с помощью стойки ЧПУ. При получении команды из стойки пройти определенное расстояние вдоль координатной оси Х, в субблоке цифрового аналогового преобразователя стойки создается напряжение некоторой величины, которое передается для питания привода указанной координаты. В сервомоторе начинается вращение ходового винта, с которым связан энкодер и исполнительный орган станка. В первом происходит выработка импульсов, подсчитываемых стойкой. Программа предусматривает, что некоторое количество сигналов с энкодера соответствует определенному расстоянию прохождения исполняющего механизма. При получении нужного количества импульсов аналоговый преобразователь выдает нулевое значение выходного напряжения, и сервомотор останавливается. В случае смещения под внешним воздействием рабочих элементов станка на энкодере формируется импульс, обсчитываемый стойкой, на привод подается напряжение рассогласования, и якорь двигателя поворачивается до получения нулевого значения рассогласования. В результате обеспечивается точное удержание рабочего элемента станка в заданном положении.

Разновидности серводвигателей

Как и другие устройства, серводвигатели представлены в нескольких исполнениях. Такого рода изделия бывают:

  1. Коллекторными;
  2. Безколлекторными.

Устройства могут запитываться и постоянным, и переменным током. Сервомоторы переменного напряжения являются сравнительно дешевыми. Изделия также представлены на рынке в асинхронном и синхронном исполнении. В синхронном варианте в процессе работы изделия перемещение магнитного поля совпадает с вращением ротора, поэтому их направление относительно статора совпадает. Управление асинхронными устройствами производится за счет перемены параметров питающего тока (изменение его частоты с помощью инвертора). Для серводвигателей, которые имеют привод с помощью постоянного тока, предусмотрена маркировка аббревиатурой DC. Такого типа изделия в большинстве случаев применяются в оборудовании, предназначенном для беспрерывной работы, поскольку их отличает большая стабильность при эксплуатации.

Технические характеристики серводвигателей

Эксплуатационные характеристики синхронных и асинхронных двигателей несколько отличаются.

Синхронные сервомоторы Асинхронные сервомоторы
Обладают высокой рабочей динамикой (скорость перехода из статического в динамическое состояние). Имеют среднюю и высокую динамику в работе.
В период больших моментов инерционных нагрузок умеренно хорошо регулируются. При пиковых моментах нагрузок инерционного типа хорошо настраиваются.
Способны выдерживать высокие перегрузки (до 6 Мн в зависимости от типа агрегата). Способность к перегрузкам приближается к трехкратной величине.
Имеют высокую границу допустимых тепловых нагрузок при работе на протяжении длительного времени во всем диапазоне частоты вращения вала. Двигатели способны выдерживать высокие тепловые нагрузки, уровень которых зависит от скорости вращения вала.
Охлаждение изделия происходит по конвекционной технологии, а также с использованием специально предусмотренных теплоотводов или же путем теплового излучения. Охлаждение частей механизма осуществляется с помощью крыльчатки, размещенной на валу, или принудительным способом.
Высококачественное регулирование частоты вращения вала. Частота вращения вала регулируется с высоким уровнем качества.
Возможна длительная эксплуатация с пусковым моментом на невысоких оборотах. Высокие тепловые нагрузки делают невозможной длительную эксплуатацию на низких оборотах без обеспечения принудительного охлаждения.
Преобразователь (в зависимости от характеристик) позволяет осуществлять регулирование частоты вращения в диапазоне о 1 до 5000 и даже более. Частота вращения регулируется преобразователем с большой эффективностью в диапазоне от 1 до 5000 и больше.
На низких частотах вращения наблюдаются пульсации вращающего момента. В процессе работы пульсации вращающего момента практически отсутствуют.

Сферы использования серводвигателей

Благодаря высокой динамике, отличной точности позиционирования и устойчивости к перегрузкам серводвигателей их используют в различных сферах деятельности. В своем большинстве такого рода изделия применяются в металлургической промышленности, при изготовлении намоточных устройств, экструдеров, механизмов, предназначенных для литья под давлением изделий из пластических масс, оборудования для печати и упаковки, в пищевой промышленности и в процессе производства напитков. Также устройства являются неотъемлемой частью станков с ЧПУ, прессовального и штамповочного оборудования, линий по производству автомобилей и т.д. Основным направлением применения серводвигателей являются приводы подачи и позиционные станочные системы с цифровым программным управлением .

Подключение сервоприводов

При подключении сервомотора в первую очередь следует убедиться в правильности коммутации питающих кабелей. Сервомоторы имеют две группы проводов. Силовые (питающие) и провода от энкодера. Питающих провода в пучке 3 штуки, они подключаются к драйверу. Провода от энкодера подключаются к COM — порту драйвера. Тип питания и его величина зависит от разновидности изделия.

Маленькие сервомашинки имеют в большинстве 3 провода. 1 провод общий, 1 провод плюсовой и 3 провод сигнальный, от датчика оборотов. Такая питающая схема распространенна для низкооборотистых маломощных сервомашинок, в конструкции которых есть редуктор.

Рекомендуется применять экранированные витые проводники для передачи управляющих сигналов. Для исключения возможности возникновения наводок электромагнитных полей не нужно размещать рядом кабеля питания и провода управления. Они должны располагаться на расстоянии не менее тридцати сантиметров.

Преимущества и недостатки серводвигателей

Серводвигатели обладают бесшумностью и плавностью работы. Это надежные и безотказные изделия, благодаря чему их широко используют при создании ответственных исполнительных устройств. Высокая скорость и точность перемещения могут обеспечиваются также и на невысоких скоростях. Такой двигатель может быть подобран пользователем в зависимости от предстоящих разрешаемых задач. К недостаткам следует отнести высокую стоимость модуля, а также сложность его настройки. Производство серводвигателей требует наличия высокотехнологичного промышленного оборудования.

Таким образом, потребители могут приобрести серводвигатели, которые наиболее всего соответствуют условиям предстоящей эксплуатации, создав исполнительное устройство, отличающееся высокой надежностью и функциональностью.

Сервомоторы используются в автомобильных системах для линейного и углового перемещения элементов, к точности положения которых выдвигаются повышенные требования. В основе работы сервопривода лежит корректировка работы электродвигателя для исполнения управляющего сигнала.

Назначение и состав

Если в качестве управляющего сигнала задается угол поворота выходного вала двигателя, выполняется его преобразование в подаваемое напряжение. Обратная связь выполняется благодаря датчику измерения одного из выходных параметров двигателя. Значение показаний датчика обрабатывается управляющим блоком, после чего осуществляется корректировка работы сервомотора.

Конструктивно сервопривод представляет собой электромеханический узел, элементы которого размещены в едином корпусе. В состав сервопривода входит электродвигатель, редуктор, датчик и блок управления.

Основными характеристиками сервопривода является рабочее напряжение питания, частота вращения, крутящий момент, а также конструктивные решения и материалы, применяемые в конкретной модели.

Особенности конструкции и работы

В современных сервоприводах применяется 2 вида электромоторов – с сердечником и с полым ротором. Двигатели с сердечником имеют ротор с обмоткой, вокруг которой расположены магниты постоянного тока. Особенностями данного типа электромоторов является возникновение вибраций во время вращения маятника, что несколько снижает точность угловых перемещений. Двигатели с полым ротором лишены данного недостатка, но более дорогостоящи в связи с усложнением технологии изготовления.

Редукторы сервоприводов служат для снижения частоты вращения и увеличения крутящего момента на выводном валу. Редукторы сервоприводов в большинстве случаев состоят из цилиндрической зубчатой передачи, шестерни которой изготовлены из металла либо полимерных материалов. Металлические редукторы характеризуются большей стоимостью, но более прочны и долговечны.

В зависимости от требуемой точности работы в конструкции сервоприводов могут быть использованы пластиковые втулки либо шарикоподшипники для ориентации выходного вала относительно корпуса.

Также сервоприводы различают по типу блока управления. Существуют аналоговые и цифровые блоки управления сервоприводом. Цифровой блок позволяет обеспечивать более точное позиционирование рабочего органа сервопривода и большую скорость реакции.