Усилитель низкой частоты (УНЧ) на микросхеме TDA7250. Домашний усилитель - схемы и печатные платы Принцип действия усилителя на TDA2030

Евгения Смирнова

Посылать свет в глубину человеческого сердца - вот назначение художника

Подключение динамиков к ноутбуку, телевизору или другому источнику музыки иногда требует усиления сигнала с помощью отдельного устройства. Идея собрать усилитель своими руками хороша, если вы склонны к работе с печатными платами в домашних условиях и имеете некоторые технические навыки.

Как сделать усилитель звука

Начало работ по сборке усиливающего устройства для колонок того или иного типа состоит из поиска инструментов и комплектующих. Схема усилителя на печатной плате собирается с помощью паяльника на термоустойчивой опоре. Рекомендуется использовать специальные паяльные станции. Если сборка своими руками проводится для целей тестирования схемы или для использования в течение небольшого срока, подойдет вариант «на проводах», но вам потребуется больше места для размещения комплектующих. Печатная плата гарантирует компактность устройства и удобство в дальнейшем применении.

Дешевый и распространенный усилитель для наушников или малых динамиков создается на базе микросхемы – миниатюрного управляющего блока с заранее вшитым набором команд управления электрическим сигналом. К схеме с микросхемой остается добавить всего несколько резисторов и конденсаторов. Суммарная стоимость усилителя любительского класса в итоге значительно ниже цены готовой профессиональной аппаратуры из ближайшего магазина, но и функционал ограничивается изменением выходной громкости аудиосигнала.

Помните об особенностях компактных одноканальных усилителей, собираемых своими руками на основе микросхем серий TDA и их аналогов. Микросхема выделяет большое количество тепла в процессе работы, поэтому вы должны исключить или минимизировать ее соприкосновение с другими деталями устройства. Радиаторная решетка для отвода тепла рекомендуется к использованию. В зависимости от модели микросхемы и мощности усилителя увеличивается размер требуемого радиатора. Если усилитель собирается в корпусе, следует предварительно спланировать место под теплоотвод.

Другая особенность сборки усилителя звука своими руками – низкое потребляемое напряжение. Это позволяет использовать простой усилитель в автомобилях (питание от авто аккумулятора), в дороге или дома (питание от специального блока или батарей). Некоторые упрощенные усилители звука требуют напряжения тока всего в 3 Вольта. Потребляемая мощность зависит от того, какая степень усиления звукового сигнала требуется. Усилитель звука c плеера для стандартных наушников потребляет около 3 Ватт.

Начинающему радиолюбителю рекомендуется воспользоваться компьютерной программой для создания и просмотра принципиальных схем. Файлы для таких программ могут иметь расширение *.lay – они создаются и редактируются в популярном виртуальном инструменте Sprint Layout. Создание схемы своими руками с нуля имеет смысл, если вы уже набрались опыта и желаете экспериментировать с полученными знаниями. Иначе ищите и скачивайте готовые файлы, по которым можно быстро собрать замену низкочастотному усилителю для автомагнитолы или цифровому комбоусилителю для гитары.

Для ноутбука

Собирается звукоусилитель своими руками для ноутбука в одном из двух случаев: встроенные динамики вышли из строя либо же их громкости и качества звучания недостаточно для ваших нужд. Потребуется простой усилитель, рассчитанный на мощность внешних колонок до 2 Ватт, и сопротивление обмоток до 4 Ом. Для его сборки своими руками кроме стандартных инструментов радиолюбителя (плоскогубцы, паяльная станция) потребуется печатная плата, микросхема TDA 7231, блок питания на 9 Вольт. Самостоятельно подберите корпус, в котором разместятся компоненты усилителя.

В список закупаемых комплектующих добавьте следующие позиции:

  • конденсатор неполярный 0,1 мкФ – 2 шт.;
  • конденсатор полярный 100 мкФ – 1 шт.;
  • конденсатор полярный 220 мкФ – 1 шт.;
  • конденсатор полярный 470 мкФ – 1шт.;
  • резистор постоянный 10 КОм – 1 шт.;
  • резистор постоянный 4,7 Ом – 1 шт.;
  • выключатель двухпозиционный – 1 шт.;
  • гнездо для выхода на громкоговоритель – 1 шт.

Порядок сборки определите самостоятельно в зависимости от того, какую электросхему формата *.lay вы скачали. Радиатор подберите такого размера, чтобы его теплопроводность позволила сохранять рабочую температуру микросхемы ниже 50 градусов Цельсия. Если устройство постоянно используется с ноутбуком вне помещений, ему потребуется самодельный корпус с прорезями или отверстиями для циркуляции воздуха. Собрать такой корпус можно своими руками из пластикового контейнера или остатков старой радиоаппаратуры, закрепив плату с помощью длинных винтов.

Для наушников своими руками

Простейший стереоусилитель для портативных наушников должен обладать небольшой мощностью, но самым важным параметром будет энергопотребление. В идеальном примере конструкция запитана от пальчиковых батареек, в крайнем случае, от простого адаптера на 3 Вольт. Вам понадобится высококачественная микросхема TDA 2822 или ее аналог (например, КА 2209), электронная схема сборки усилителя своими руками на TDA 2822. Дополнительно возьмите комплектующие:

  • конденсаторы 100 мкФ (4 шт.);
  • до 30 см медного провода;
  • гнездо для провода наушников.

Теплоотводящий элемент понадобится, если желаете сделать усилитель компактным и с закрытым корпусом. Усилитель можете собрать на готовой или самодельной печатной плате либо навесным монтажом. Импульсный трансформатор в источнике питания может создавать помехи, поэтому не используйте его в данном варианте усилителя. Готовый усилитель обеспечит приятный и мощный звук с плеера (записи или радиосигнал), планшета или телефона.

Схема усилителя для сабвуфера

Низкочастотный усилитель собирается своими руками на микросхеме TDA 7294. Используется как для создания мощной акустики с басами в квартире, так и в качестве автоусилителя – в этом случае, правда, нужно приобрести двухполярный источник питания на 30-35 Вольт. На рисунках ниже описано расположение комплектующих, а также номинал резисторов и конденсаторов. Такой усилитель для сабвуфера обеспечит выходную мощность до 100 Ватт с выделяющимися низкими частотами.

Мини усилитель звука для колонок

В качестве устройства усиления звука для отечественных или зарубежных домашних колонок подойдет описанная выше конструкция для ноутбуков. Стационарное размещение устройства позволит выбирать любой адаптер питания из имеющихся в наличии. Миниатюрность и приемлемый внешний вид недорогого усилителя вы сможете обеспечить, соблюдая несколько правил:

  1. Готовая качественная печатная плата.
  2. Прочный пластиковый или металлический корпус (закажите у мастера).
  3. Размещение компонентов заранее спланировано.
  4. Усилитель спаян аккуратно, без лишних капель припоя.
  5. Радиатор касается только микросхемы.
  6. Использованы готовые гнезда для выхода сигнала и ввода питания.

Ламповый усилитель звука своими руками

Ламповые усилители звука – это дорогостоящие устройства при условии, что вы закупаете все комплектующие на собственные средства. Старые радиолюбители иногда держат у себя коллекции ламп и других деталей. Собрать ламповый усилитель на дому своими руками относительно легко, если вы готовы потратить несколько дней на поиск подробных схем в интернете. Схема усилителя звука в каждом случае уникальна и зависит от источника звука (старый магнитофон, современная цифровая техника), источника питания, предполагаемых габаритов и других параметров.

Усилитель звука на транзисторах

Сборка предусилителя звука своими руками без использования сложных микросхем возможна на транзисторах. Усилитель на германиевых транзисторах легко встраивают в современные аудиосистемы, он не требует дополнительной настройки. Недостатком схем на транзисторах считается больший размер плат в сборе. Неприятна и зависимость от «чистоты» фона – вам потребуется экранированный кабель, либо дополнительная схема подавления шумов и пульсаций из сети.

Видео: усилитель мощности звука своими руками

Нашли в тексте ошибку? Выделите её, нажмите Ctrl + Enter и мы всё исправим!

Если нужно сделать простой, но достаточно мощный УМЗЧ — микросхема TDA2040 или TDA2050 будет наилучшим и недорогим решением. Этот небольшой стереофонический усилитель ЗЧ построен на основе двух всем известных микросхем TDA2030A. По сравнению с классическим включением, в этой схеме улучшена фильтрация питания и оптимизирована разводка печатной платы. После добавления любого предусилителя и блока питания — конструкция идеально подходит для изготовления самодельного домашнего усилителя мощности звука, примерно на 15 Вт (каждый канал). Проект изготовлен на основе TDA2030A, но можно использовать TDA2040 или TDA2050, тем самым раза в полтора увеличивая выходную мощность. Усилитель подходит для динамиков с сопротивлением 8 или 4 Ом. Преимуществом конструкции является то, что она не требует двух-полярного питания, как большинство . Схема отличается хорошими параметрами, легкостью запуска и надежностью в работе.

Принципиальная электрическая схема УНЧ

Усилитель 2x15W ТДА2030 — схема стерео

TDA2030A позволяет спаять усилитель низкой частоты класса AB. Микросхема обеспечивает большой выходной ток, характеризуясь при этом низкими искажениями сигнала. Есть защита встроенная от короткого замыкания, которая автоматически ограничивает мощность до безопасной величины, а также традиционная для таких устройств тепловая защита. Схема состоит из двух одинаковых каналов, работа одного из которых описана далее.

Принцип действия усилителя на TDA2030

Резисторы R1 (100k), R2 (100k) и R3 (100k) служат для создания виртуального нуля усилителя U1 (TDA2030A), а конденсатор C1 (22uF/35V) фильтрует это напряжение. Конденсатор С2 (2,2 uF/35V) отсекает постоянную составляющую — предотвращает попадание постоянного напряжения на вход микросхемы усилителя через линейный вход.

Элементы R4 (4,7k), R5 (100k) и C4 (2,2 uF/35V) работают в петле отрицательной обратной связи и имеют задачу формирования частотной характеристики усилителя. Резисторы R4 и R5 определяют уровень усиления, в то время как C4 обеспечивает усиление в единицу для постоянной составляющей.

Резистор R6 (1R) вместе с конденсатором C6 (100nF) работают в системе, которая формирует характеристику АЧХ на выходе. Конденсатор C7 (2200uF/35V) предотвращает прохождение постоянного тока через динамик (пропуская переменный звуковой сигнал музыки).

Диоды D1 и D2 предотвращают появление опасных напряжений обратной полярности, которые могут возникнуть в катушке динамика и испортить микросхему. Конденсаторы C3 (100nF) и C5 (1000uF/35V) фильтруют питающее напряжение.

Печатная плата УНЧ


Печатная плата УНЧ ТДА2030

Печатную плату можете посмотреть на фотографиях. с чертежами можно в архиве (без регистрации). Что касается сборки — удобно сначала впаять две перемычки на шинах питания. По возможности следует использовать более толстый провод, а не тоненькую ножку от резистора, как часто бывает. Если усилитель будет работать с АС 8 Ом, а не 4 Ома — конденсаторы C7 и C14 (2200uF/35V) могут иметь значение 1000uF.

На фланцы обязательно следует прикрутить радиаторы или один общий радиатор, помня, что корпуса микросхем TDA2030A внутренне связаны с массой.

На печатной плате с успехом можно применять микросхемы TDA2040 или TDA2050 без всяких изменений цоколёвки. Плата была разработана таким образом, чтобы ее можно было при необходимости перерезать в месте, обозначенном пунктирной линией, и использовать только одну половину усилителя с микросхемой U1. На место разъемов AR2 (TB2-5) и AR3 (TB2-5) можете впаивать провода напрямую, если аудио разъёмы закреплены на корпусе усилителя.


Печатная плата усилителя готовая с расположением деталей

Корпус и БП

Блок питания берите или с трансформатором плюс выпрямитель, или готовый импульсный, например от ноутбука. Усилитель необходимо питать не стабилизированным напряжением в пределах 12 — 30 В. Максимальное напряжение питания 35 В, до которого естественно лучше не доходить на пару вольт, мало ли что.

Корпус делать с нуля очень хлопотно, так что проще всего подобрать готовую коробку (металл, пластик) или даже готовый корпус от электронного устройства (ТВ тюнер спутниковый, плеер DVD).

Начну с того, что этот проект был создан и реализован при помощи добрых людей, которые во многом помогли в деле реализации этого комплекса. Как всегда начну с благодарностей. Администрация и весь коллектив сайтов http://сайт/ и http://x-shoker.ru/ - спасибо за конкурс и моральную поддержку, критикам тоже большое спасибо , хорошему другу Евгению за помощь с компонентами инверторов, и всем читателям, подписчиками и другим частным лицам, которые в какой-то мере оказали помощь в реализации давней идеи - создания мощного и качественного домашнего усилителя . Прошлым летом был создан автомобильный аудиокомплекс, но с тех пор прошел уже год и пришло время перемен. Для начала поясню суть идеи. Было задумано собрать усилительную установку разряда Hi-Fi для работы в автомобиле. Требования к усилителю были такими: мощный канал 250-350 ватт для питания сабвуфера, два канала для питания тыловой акустики, и 8 каналов для питания маломощных головок фронта, но все выбранные усилители должны были относится к Hi-Fi. Для реализации такого крупномасштабного проекта нужны были финансы, нервы и куча времени, которые у меня имелись.

ПЕЧАТНАЯ ПЛАТА

Над платой долго не думал, в наличии имелись все платы отдельных блоков, нужно было только все шаблоны перенести на фольгированный стеклотекстолит и потравить. Файлы плат и схем . Шаблоны были нанесены на общую плату после недолгих подсчетов. Для этого процесса использовал широко-известный , каждый шаблон гладил 90 секунд, гладить нужно тщательно, чтобы тонер намертво прилип к фольгированной поверхности текстолита и не отклеивался при удалении бумаги.


Далее даем текстолиту остыть 5-10 минут, затем аккуратно убираем бумагу. Для начала плату нужно поставить в сосуд с водой и ждать пару минут, после чего аккуратно убрать бумагу. Реагентов для травления в городке не нашел, пришлось идти на альтернативу. Альтернативный раствор состоит из трех основных компонентов - перекиси водорода , лимонной кислоты и поваренной соли .


На мою плату в общем случае было потрачено 12 бутылок перекиси водорода (3-х процентный раствор перекиси водорода, каждая бутылка 100 мг) - приобретено в аптеке 12 пачек лимонной кислоты (пачка - 40 мг) - куплено в продуктовом магазине 9 чайных ложек поваренной соли - украдено из кухни собственного дома. Все компоненты перемешиваются до полного растворения соли и лимонной кислоты.

Из-за больших размеров платы, возникли трудности с сосудом, в котором планировалось травление. Тут тоже решил пойти на альтернативу. В магазине был приобретен полиэтиленовый пакет, который поместил в коробку от какого-то проигрывателя, плата отлично поместилась в такой "сосуд". Налил раствор и все это дело поставил на солнце.

Весь процесс травления длился не более часа. Довольно бурная реакция, поэтому нужно проводить на чистом воздухе. Дальше нужно стереть тонер. Для этого используют чистые (или не очень) тряпочки и ацетон. Уже готовую плату нужно тщательно помыть теплой водой, затем высушить феном.


Еще одна проблема - утилизация раствора, я поступил по-варварски сливая весь раствор в канализацию, когда будете делать также, следите, чтоб никто не увидел, а то нахлынут экологи, в моем случае такой проблемы не возникло, поскольку сам являюсь экологом (lol ).


Дальше уже нужно заняться сверлением отверстий, а тут их очень, очень много. Половину отверстий сверлил 3-х килограммовой дрелью, затем специально для этой затеи на аукционе ebay была куплена мини-дрель со всеми удобствами. В процессе сверления использовал сверла 0.8мм для мелких компонентов (резисторы, конденсаторы, микросхемы и т.п.), сверла 1 мм для более крупных (выходные транзисторы усилителей, силовые диоды) и сверла 5мм для выводов обмоток импульсных трансформаторов.


Уже просверленную плату нужно залудить. Для этого нужен паяльник на сотню ватт, сосновая канифоль, ну и разумеется олово. Советую во время этого процесса надеть маску, дым от канифоли не токсичен, но тут образуется целое облако дыма, дышать довольно трудно при таких условиях. Глянцевый слой олова предает печатной плате красивый внешний вид и сохранит медные дорожки от окисления. Только после завершения этого процесса мы имеем полностью готовую печатную плату, а теперь можно С уважением - АКА КАСЬЯН .

Обсудить статью ДОМАШНИЙ УСИЛИТЕЛЬ - СХЕМЫ И ПЕЧАТНЫЕ ПЛАТЫ

Эта статья рассматривает специальные вопросы проектирования и использования печатных плат применительно к усилителям мощности, особенно для тех, которые работают в классе В. Все усилители мощности имеют в своем составе каскады усиления мощности как таковые и связанные с ними схемы управления и защиты. Большинство усилителей также имеет малосигнальный НЧ каскад, выходные усилители с симметричным выходом, фильтр дозвуковых частот, измерители выходного сигнала и т.д.

Также рассматриваются и другие вопросы, относящиеся к проектированию печатных плат, такие как заземление, вопросы безопасности, надежности и т. д. Рабочие характеристики низкочастотного усилителя мощности зависят от большого количества факторов, во всех случаях тщательная проработка печатной платы является определяющей, прежде всего из-за опасности возникновения искажений, вызываемых индуктивными помехами; возможное взаимодействие между цепями прохождения сигнала и шинами питания очень легко может явится причиной ограничения линейности характеристик усилителя, поэтому очень трудно переоценить важность данной проблемы. Выбранная схема (расположения компонентов и рисунка токопроводящих дорожек) печатной платы будет в значительной степени определять как уровень искажений, так и уровень перекрестных помех усилителя.

Помимо изложенных соображений относительно рабочих характеристик усилителя схема печатной платы будет оказывать значительное влияние на технологичность монтажа, простоту проверки, доступность для ремонта и надежность. Все из вышеперечисленных аспектов проблемы рассматриваются ниже.

Успешная разработка схемы печатной платы усилителя требует определенных знаний по электронике, позволяющих понимать все тонкости описанных ниже эффектов, чтобы процесс разработки печатной платы проходил гладко и эффективно. Уже считается общепринятым при разработке печатных плат для различных областей электроники отдаваться во власть профессионалов, которые, будучи весьма осведомлены в тонкостях работы с автоматизированными системами проектирования, имеют весьма смутное или даже полнейшее отсутствие понимания тонкостей работы электронных схем. Для некоторых областей такой подход оказывается приемлемым; при проектировании усилителя мощности он оказывается полностью неадекватным из-за того, что основные характеристики, такие как перекрестные помехи и уровень искажений, весьма сильно зависят от монтажной схемы. Чуть ниже проектировщик печатной платы окажется в состоянии понять, о чем, собственно, идет речь.

Перекрестные помехи

Перекрестная помеха (или явление «перетекания» сигнала из одного канала в другой, электрические наводки, вызванные прохождением сигнала в соседних проводах) характеризуется, прежде всего, источником сигнала (которым может служить любое комплексное сопротивление) и приемником, обычно имеющим более высокое значение комплексного сопротивления, или потенциал виртуальной, «плавающей» земли. Когда обсуждаются перекрестные помехи в каналах связи, обычно передающий и принимающий каналы называются соответственно речевым и неречевым каналами.

Перекрестные помехи возникают и проявляются в различном облике:

  1. Емкостные перекрестные помехи являются следствием близкого расположения в пространстве двух электрических проводников и могут быть представлены с использованием виртуального (или эффективного) конденсатора, соединяющего две цепи. Емкость такого конденсатора возрастает с увеличением частоты пропорционально значению 6 дБ/октаву, хотя возможны и более высокие скорости увеличения емкости. Экранирование проводников любым проводящим материалом полностью решает проблему, хотя увеличение расстояния между такими проводниками оказывается менее дорогостоящим способом.
  2. Резистивные перекрестные помехи возникают по той простой причине, что сопротивление шин заземления отличается от нулевого значения. Медь при комнатной температуре не является сверхпроводником. Резистивные перекрестные помехи не зависят от частоты.
  3. Индуктивные перекрестные помехи редко представляют проблему при разработке аудиоаппаратуры; они могут возникать при опрометчивой установке двух низкочастотных трансформаторов слишком близко друг к другу, но помимо этого случая об этой проблеме обычно можно и забыть. Существенным исключением из этого правила является низкочастотный усилитель мощности класса В, в котором токи, протекающие по шинам питания, имеют форму полусинусоид и которые могут серьезно отразиться на уровне искажений усилителя, если им будет позволено взаимодействовать с цепями входного сигнала, контуром обратной связи или цепями выходного каскада.

В большей части линейных низкочастотных цепей основной причиной перекрестных помех является нежелательная емкостная связь между различными цепями схемы, и в подавляющем большинстве случаев она определяется рисунком (трассировкой) проводов и токопроводящих дорожек печатной платы. В противоположность этому усилители мощности класса В страдают практически в незначительной или даже в пренебрежимо малой мере от перекрестных помех, вызванных емкостными эффектами, так как полные комплексные сопротивления цепей стремятся сделать небольшими, а расстояния между ними достаточно большими; гораздо большую проблему представляет индуктивная связь между шинами, по которым протекают токи питания, и цепями, по которым проходит сигнал. Если такая связь возникает между цепями одного канала, то она проявляется в виде искажений и может привести к значительной нелинейности характеристик усилителя. Если это взаимодействие распространяется на другой (неречевой) канал, то она проявится в виде перекрестных помех искаженного сигнала. В любом случае такая связь крайне нежелательна и для предотвращения ее появления должны быть предприняты специальные меры.

Трассировка печатной платы только один элемент этой борьбы, так как перекрестные помехи должны каким-то образом не только излучаться, но также и где-то приниматься. Как правило, источником максимального излучения будут собственные, внутренние электрические провода благодаря их общей длине и распространенности, схема трассировки проводов, возможно, будет наиболее критичной для достижения наилучших рабочих характеристик, поэтому для их закрепления необходимо использовать различные фиксаторы, кабельные зажимы и т.п. В качестве принимающего устройства выступают чаще всего входные цепи и цепи обратной связи, которые также располагаются на печатной плате. Для хорошей работы устройства необходима проработка этих вопросов с точки зрения максимальной защищенности от излучения.

Искажения, вызванные наводками шин питания

По шинам питания усилителя мощности класса В протекают очень большие и очень искаженные по форме токи. Как уже подчеркивалось ранее, если за счет индукции будет допущено их взаимодействие на цепи, по которым проходит акустический сигнал, то уровень искажений резко возрастет. Это относится к проводникам печатной платы, а точно так же к кабельным соединениям, грустная правда заключается в том, что достаточно просто изготовить печатную плату усилителя, которая будет абсолютно идеальной во всех отношениях, за исключением только этого одного требования, и единственным решением будет использование второй платы. Все же для получения оптимального результата следует руководствоваться следующими требованиями:

  1. Необходимо свести у минимуму электромагнитное излучение от шин питания, расположив шины положительного и отрицательного напряжений настолько близко друг от друга, насколько это возможно физически. Их следует располагать как можно дальше от входных цепей каскада усилителя и соединительных выходных клемм; лучшим методом будет подводить провода шин питания к выходному каскаду с одной стороны, а остальные провода усилителя – с другой. Затем следует проложить провода от выхода, чтобы питать остальную часть усилителя; по ним уже не будет проходить ток, имеющий однополупериодную форму, поэтому он не вызовет проблем.
  2. Необходимо свести у минимуму поглощение электромагнитного излучения шин питания, сведя к минимуму площадь контуров, охватываемых проводами входной цепи и цепи обратной связи. Они образуют замкнутые контуры через землю, поэтому площадь контуров, охватываемых ими, должна быть минимальной. Достаточно часто наилучший результат может быть получен путем максимального пространственного разнесения и прокладывания проводов входных цепей и контура обратной связи поперек дорожки НЧ заземления, которая проходит через центр печатной платы от входной до выходной точки контура заземления. Индуктивные искажения также могут встречаться при взаимодействии с выходными проводами и проводами выходного заземления. Последний случай представляет достаточно серьезную проблему, так как обычно трудно изменить его положение в пространстве без обновления самой печатной платы.

Установка выходных полупроводниковых приборов

Наиболее важное принципиальное решение заключается в том, стоит ли устанавливать мощные выходные приборы на основной печатной плате усилителя. Существует ряд сильнейших аргументов в пользу такого решения, но, тем не менее, не всегда такой выбор является наилучшим.

Преимущества:

  1. Печатная плата усилителя может быть рассчитана таким образом, чтобы сформировать конструктивно законченный блок, который может быть тщательно проверен до того, как он будет установлен на шасси. Такой подход значительно облегчает тестирование, так как обеспечен доступ к различным точкам схемы со всех сторон; он также устраняет вероятность поверхностных повреждений самой печатной платы (царапины и т.п.) во время проверки.
  2. Исключено неправильное подключение выходных полупроводниковых приборов при условии, что необходимые полупроводниковые приборы установлены в правильных положениях. Это достаточно существенный аргумент, так подобные ошибки обычно выводят из строя выходные полупроводниковые приборы, а также приводят к другим негативным эффектам, развивающихся по принципу падающих костяшек домино, и на исправление которых потребуется большое количество времени (и средства).
  3. Все соединительные провода, ведущие к выходным полупроводниковым приборам, должны быть как можно короче. Это помогает увеличить устойчивость выходного каскада и противостоять возникновению ВЧ колебаний.

Недостатки:

  1. Если выходные приборы усилителя требуют частой замены (что со всей очевидностью говорит о какой-то очень серьезной недоработке), то повторяющаяся операция по перепаиванию повредит дорожки печатной платы. Однако если случилось самое худшее, то поврежденный участок может быть всегда заменен коротким проводником, поэтому нет необходимости отправлять печатную плату в утиль; будьте уверены, всегда возможно осуществление подобного варианта ремонта.
  2. Вполне возможно, что выходные полупроводниковые приборы могут нагреваться очень сильно, даже если они работают в номинальных режимах; для приборов типа ТО3 температура корпусов 90 °С не является чем-то необычным. Если используемый метод монтажа не допускает некоторой степени упругости, то тепловое расширение может привести к возникновению механических усилий, которые способны оторвать крепежные прокладки печатной платы.
  3. Теплоотводящий радиатор будет иметь, как правило, значительные размеры и массу. Поэтому необходимо применять достаточно жесткую конструкцию, крепящую печатную плату и радиатор. В противном случае вся конструкция из-за отсутствия достаточной жесткости будет при транспортировке вибрировать, создавая избыточные усилия в местах пайки соединений.

Конкурс начинающих радиолюбителей
“Моя радиолюбительская конструкция”

Конкурсная конструкция начинающего радиолюбителя
“Усилитель низкой частоты на микросхеме TDA7384″

Здравствуйте уважаемые друзья и гости сайта!
Представляю вам первую конкурсную работу (второго конкурса сайта) начинающего радиолюбителя Ruslana Volkova :

Усилитель низкой частоты на микросхеме TDA7384

Всем радиолюбителям привет!

Представляю Вам свою первую работу:
“Усилитель низкой частоты на микросхеме TDA7384″

УНЧ выполнен на интегральной микросхеме TDA7384, содержащей четыре идентичных УНЧ по 40 ватт.

Технические характеристики усилителя:
Uпит……………….9-18 V
F выхода………….20-20000Hz
I покоя…………….250mA
I потр. макс………10А

Микросхему я выпаял из сломанной магнитолы “Kenwood”, модель, уже, не помню какая. Для начала нашел в “инете” datasheet на TDA7384. Потом определился, где я буду использовать этот усилитель, и приступил к созданию затеянного.
Первым делом выпаял из старых плат нужные детали, затем нашел в интернете печатную плату TDA 7384.lay и приступил к делу.

Схема усилителя низкой частоты на TDA7384:

Печатная плата усилителя в формате.Lay:

Конструктивно усилитель выполнен на печатной плате из фольгированного стеклотекстолита. Конструкция предусматривает подключение усилителя как к стереофоническому источнику, с последующим раздвоением каждого канала, так и к квадрофоническому источнику.
Квадрофонический источник необходимо подключать к входам Вход 1, Вход 2, Вход 3, Вход 4.
Стереофонический источник подключается к замкнутым контактам Вход 1/Вход 2 и Вход 3/Вход 4:

Схема подключения усилителя в режиме “Стерео”

Микросхему нужно установить на теплоотвод площадью не менее 400 кв. см или 150-200 кв. см с кулером!
Выполнив вышесказанные условия, получилась вот такая плата с радиатором и кулером от старого ПК:

Плата получилась не очень, делал при помощи принтера, утюга и хлорного железа.

Вход на усилитель стерео (подключается к замкнутым контактам Вход 1/Вход 2 и Вход 3/Вход 4), выход – квадрофонический (необходимо подключать к входам Вход 1, Вход2, Вход3, Вход4), маленький штекер – питание кулера = 12 вольт:

Теперь надо найти для него 12 вольтовый источник питания. Я использовал блок питания от компьютера, так как он достаточно мощный и занимает мало места.

Удалил все не нужные провода, оставив 12 вольт – жёлтый провод (у меня красный) и запуск БП – зелёный провод:

Подключил БП к усилителю, ничего не задымилось, значит всё сделано правильно, можно пробовать подключать колонки (звуковой сигнал я взял от ПК):

Передние: задние:

Подключил, всё заработало, УРА!!! Но громкость на передних и задних колонках разная, что делать?

Порывшись в “инете”, нашёл схему предварительного усилителя на микросхеме К157УД2, её можно заменить на К157УД3:

Нарисовал на листе бумаги А4 будущую плату с подбором нужных деталей:

После этого отсканировал и отредактировал в программе Paint Net, вот что получилось:

Я думаю, что получилось не хуже чем в других программах. Такой способ будет полезным тем, у кого не получается работать в программах созданных для рисования плат.
Вот что у меня получилось:

Плата получилась немного лучше предыдущей, я думаю что всё дело в хлорном железе, буду пробовать травить платы в чём то другом.

Если будете использовать четыре канала на входе усилителя, нужно будет сделать две такие платы, регулировка будет на все четыре канала. В моём варианте регулировка осуществляется одновременно по двум передним и по двум задним колонкам.

Собираем всё в подходящий корпус и подключаем:








После подключения построчными резисторами R7, R8 регулируем громкость на колонках и пользуемся.
Чтобы не разбирать усилитель, при подключении других колонок, или другого входного звукового сигнала, подстрочные сопротивления можно заменить на переменные и вывести их на переднюю панель.