Источники питания для LCD и LED дисплеев. Мир периферийных устройств пк Измерение цветовых характеристик

В этой статье мы рассмотрим как можно своими силами отремонтировать монитор.

Современный ЖК-монитор состоит всего из двух плат: скалера и блока питания

Скалер – это плата управления работой монитора. Его мозг. Здесь монитор преобразует цифровой сигнал в цвета на дисплее, а также содержит в себе различные настройки. На ней содержатся процессор, flash-память, куда записывается прошивка монитора, и EEPROM-память, в которой сохраняются текущие настройки.

Блок питания. Он обеспечивает питанием цепи монитора. Может в себе также содержать инвертор для мониторов с LCD подсветкой. В мониторах с LED подсветкой инвертора нет.

Блок питания для монитора выглядит примерно вот так:


Есть также и существенное различие. В блоках питания для мониторов с LCD подсветкой можно увидеть высоковольтную часть. Он же инвертор. О его присутствии говорят надписи типа “High Voltage” и клеммы, для подключения ламп. Имейте ввиду, что напряжение, подаваемое на лампы, составляет более 1000 Вольт! Лучше не трогать и тем более не лизать эту часть при включении монитора в сеть.

Вздутые конденсаторы

Это, конечно же, электролитические конденсаторы в фильтре блока питания.


Это одна из самых распространенных поломок ЖК-мониторов. Перепаиваются конденсаторы легко и просто. Иногда на платах стоит не стандартный номинал конденсаторов, например 680 или 820 мкФ х 25 вольт. Если вы столкнулись со вздувшимися конденсаторами такого номинала и их не оказалось в вашем радиомагазине, не спешите обходить все радиомагазины вашего города в поисках точно такого же номинала. Это как раз тот случай, когда “много не вредно”. Это вам скажет любой электронщик. Смело ставьте 1000 мкф х 25 вольт и все будет нормально работать. Можно даже больше.

В связи с тем, что блок питания при работе излучает тепло, которое вредно сказывается на сроке службы конденсаторов, ставьте обязательно конденсаторы с обозначением “105С” на корпусе. Также после перепаивания конденсаторов не помешает проверить предохранитель вторичных цепей, в роли которого часто выступает простой SMD резистор с нулевым сопротивлением, типоразмером 0805, находящийся с обратной стороны платы со стороны трассировки.

Выход из строя стабилитрона

И еще один нюанс, на выходе блока питания, перед самим разъемом питания идущим на скалер, часто ставят SMD стабилитрон


В случае, если напряжение на нем превышает номинальное, он уходит в короткое замыкание и тем самым отключает через цепи защиты наш монитор. Заменить его можно на любой, подходящий по номиналу напряжения. Можно даже использовать с выводами


После того, как все сделали и отремонтировали, проверяем напряжения на разъеме питания, который идет на скалер. Там все напряжения подписаны. Убеждаемся, что они совпадают с показаниями мультиметра.


Проблемы в высоковольтной части блока питания (инверторе)

Если есть возможность, то в первую очередь, всегда отыскивайте схемы ремонтируемого устройства. Давайте рассмотрим высоковольтную часть одного из мониторов


Если вы видите, что предохранитель блока питания монитора сгорел, это означает, что сопротивление между проводами питания шнура монитора (входное сопротивление), на какой-то момент стало очень низким (короткое замыкание). Где-то около 50 Ом и меньше, что в свою очередь, по закону Ома , вызвало повышения тока в цепи. От большой силы тока у нас и сгорел проводок предохранителя.

Если предохранитель в металлическо-стеклянном корпусе, мы можем вставить абсолютно любой предохранитель в крепление и прозвонить в режиме Омметра 200 Ом сопротивление между штырьками вилки. Если у нас сопротивление равно нулю и до 50 Ом, то ищем пробитый радиоэлемент, который звонится на ноль или на землю.

Шаги будут такие:

Вставляем предохранитель, переключаем мультиметр на 200 Ом и подключаем его к вилке шнура питания. Убеждаемся, что сопротивление очень маленькое. Далее не торопимся вынимать предохранитель.

Итак давайте по схеме посмотрим, какие радиодетали у нас могут коротнуть. На фото выделены цветными рамками те детали, которые необходимо будет проверить при коротком замыкании в высоковольтной части



Все эти процедуры для измерения сопротивления, делаются для того, чтобы вызвонить перечисленные детали по одной. То есть выпаиваем и снова замеряем через вилку сопротивление. Как только мы получим на входе вилки высокое сопротивление, заменив или убрав дефектный радиоэлемент, то можно смело включать вилку в розетку и копать уже дальше.

Нет подсветки монитора

Чем же отличаются мониторы с LCD подсветкой от мониторов с LED подсветкой? В LCD мониторах для подсветки у нас используются лампы CCFL. На русский язык эта аббревиатура звучит как “люминесцентная лампа с холодным катодом” .

Такие лампы располагаются сверху и снизу дисплея и подсвечивают изображение.


В LED мониторах используются для подсветки светодиоды, которые располагаются либо по бокам дисплея, либо за ним.


Сейчас все производители мониторов и ТВ перешли на LED подсветку, так как она почти в половину сокращает энергопотребление и намного долговечнее чем LCD подсветка.

Если нет подсветки, то дело может быть либо в лампах CCFL, либо в LED-ленте. Если они вообще не горят, то изображение будет настолько тусклым, что на дисплее ничего не будет видно. Только внимательный осмотр включенного монитора под освещением может показать, что изображение все-таки есть. Поэтому, если изображения вообще нет, то первым дело осмотрите включенный монитор под потоком света. Если изображение хоть немного видно, то дальше принимайте меры, либо менять лампы, либо дело в инверторе.

Пропадает подсветка монитора

Монитор у нас включается, работает секунд 5-10 и тухнет. Это говорит о том, что одна из ламп CCFL подсветки дисплея пришла в негодность. Перед этим часть экрана может также немного моргать. Инвертор в этом случае будет уходить в защиту, что и будет проявляться в автоматическом отключении подсветки монитора.

Для того, чтобы мы могли проверить лампы и исключить дефектную, надо купить в радиомагазине высоковольтный конденсатор. 27 пикофарад х 3 киловольта для мониторов диагональю 17 дюймов, 47 пф для монитора 19 дюймов и 68 пф для 22 дюйма.


Данный конденсатор нужно припаять к контактам разъема, к которому подключается лампа подсветки. Саму лампу, разумеется, при этом нужно отключить. Соединяя конденсатор поочередно к каждому разъему, мы добиваемся того, что инвертор у нас перестает уходить в защиту. Монитор заработает, хотя будет немного тусклым.

Конечно, редко кто так делает. Самая фишка – это отключить защиту на самой микросхеме ШИМ))). Для этого гуглим “снять защиту инвертора xxxxxxx” Вместо “хххххх” ставим марку нашей микросхемы ШИМ. Как-то я отключал защиту на мониторе с микросхемой ШИМ TL494 по схеме ниже, припаяв резистор на 10 КилоОм. Моник работает до сих пор. Нареканий нет).

Внутренние и внешние источники питания для LCD мониторов.

В LCD мониторах могут применяться внутренние и внешние источники питания. При ремонте необходимо определить тип блока питания LCD монитора, схемы построения силового преобразователя, определение схемотехнических решений и назначение каких либо иных схем источника питания. На этом этапе также необходимо определить элементную базу и тип применяемых микросхем, транзисторов.

Внутренний источник питания расположен в корпусе монитора и, как правило, представляет собой импульсный преобразователь, передающий переменное напряжение сети в несколько выходных шин питания постоянного тока (рис. 1). Отличительной особенностью LCD дисплеев с внутренним источником является наличие внешнего разъем 220В для подключения силового сетевого кабеля. Основным недостатком такой компоновки монитора является наличие внутри него высоковольтного мощного импульсного преобразователя, который может самым негативным образом влиять на работу самого монитора.

Рис. 1. Схема внутреннего блока питания LCD монитора.

В случае внешнего источника питания в комплекте вместе с монитором поставляется внешний сетевой адаптер, который представляет собой отдельный модуль преобразования переменное напряжение сети в необходимое постоянное напряжение номиналом порядка 12-24В (рис. 2). Схемотехнически он представляет собой точно такой же импульсный преобразователь, как и во внутреннем блоке питания. Подобное решение компоновки позволяет исключить из состава LCD монитора силовой каскад, что, в конечном счете повышает надежность изделия, а также качество отображаемой информации .

Рис. 2. Схема внешнего блока питания LCD монитора.

Для первого и второго варианта построения монитора количество выходных шин питания колеблется от одной до трех. Типовым вариантом является формирование на выходе шин +3.3В, +5В и +12В. Назначение напряжений следующее:
+5В - используется в качестве дежурного напряжения, а также для питания цифровых, аналоговых схем, логики самой LCD панели и т.д.
+3.3В - напряжение питания цифровых микросхем.
+12В - напряжение питания инвертора ламп задней подсветки, а также используется для питания драйверов LCD панели.
В случае применения внешнего блока питания все вышеперечисленные напряжения будут формироваться из одной единственной входной шины 12-24В с помощью DC-DC преобразователей постоянного тока в постоянный ток. Такое преобразование может осуществляться либо с помощью схемы линейного регулятора, либо с помощью импульсного регулятора. Линейные регуляторы применяются в слаботочных цепях, а импульсные преобразователи в тех каналах, где величина тока может достигать значительных величин. DC-DC преобразователь практически всегда расположен на основной управляющей плате монитора и является его составной частью.
Построение и реализация таких преобразователей достаточно типична и отличается в различных мониторах только количеством выходных шин на выходе и элементной базой . Преобразователи выполнены на основе импульсных понижающих преобразователей напряжений, в составе которых имеется многоканальная микросхема ШИМ, управляющая выходным силовым каскадом. Регулировка и стабилизация выходных шин выполняется с применением технологии ШИМ по цепям обратной связи.
Ремонт блока питания LCD монитора должен всегда производиться только после проведения предварительной диагностики, как отдельных элементов, так и всего источника питания в целом. Такая диагностика необходима с целью оценки возможных повреждений, определения неисправных элементов, исключения повторных отказов и возникновения помех при включении источника питания после проведения ремонтных работ.

Материал предоставлен издательством Ремонт и Сервис

Общие положения

Сразу оговоримся, что статья имеет отношение к инверторам для CCFL ламп. В данное время, вместо CCFL подсветки активно используется LED подсветка, где лучшими считаются светодиоды марок LATWT470RELZK SBWVT120E PT30W45 V1 и другие.

Для работы ЖК панели первостепенное значение имеет источник света, световой поток которого, пропускаемый через структуру жидкого кристалла, формирует изображение на экране монитора. Для создания светового потока используются люминесцентные лампы подсветки с холодным катодом (CCFL), которые располагаются на краях монитора (как правило, сверху и снизу) и с помощью матового рассеивающего стекла равномерно засвечивают всю поверхность ЖК матрицы. «Поджиг» ламп, а также их питание в рабочем режиме обеспечивают инверторы. Инвертор должен обеспечить надежный запуск ламп напряжением свыше 1500 В и их стабильную работу в течение длительного времени при рабочих напряжениях от 600 до 1000 В. Подключение ламп в ЖК мониторах осуществляется по емкостной схеме (см. рис. 1). Рабочая точка стабильного свечения (РТ - на графике) располагается на линии пересечения нагрузочной прямой с графиком зависимости тока разряда от напряжения, приложенного к лампам. Инвертор в составе монитора создает условия для управляемого тлеющего разряда, а рабочая точка ламп находится на пологой части кривой, что позволяет добиться постоянства их свечения в течение длительного времени и обеспечить эффективное управление яркостью. Купить инверторы для ЖК телевизоров и мониторов можно в интернет магазине Dalincom.

Рис. 1. График положения рабочего тока стабильного свечения ламп

Инвертор выполняет следующие функции:
преобразует постоянное напряжение (обычно +12 В) в высоковольтное переменное;
стабилизирует ток лампы и при необходимости регулирует его;
обеспечивает регулировку яркости;
согласует выходной каскад инвертора со входным сопротивлением ламп;
обеспечивает защиту от короткого замыкания и перегрузки.

Каким бы разнообразием не отличался рынок современных инверторов, принципы их построения и функционирования практически одинаковы, что упрощает их ремонт.

Структурная схема инвертора приведена на рис. 2. Блок дежурного режима и включения инвертора выполнен в данном случае на ключах Q1, Q2. ЖК монитору для включения требуется некоторое время, поэтому инвертор также включается через 2…3 с после перевода монитора в рабочий режим. С главной платы поступает напряжение ВКЛ (ON/OFF) и инвертор переходит в рабочий режим. Этот же блок обеспечивает отключение инвертора при переходе монитора в один из режимов экономии электро-энергии. При поступлении на базу транзистора Q1 положительного напряжения ВКЛ (3…5 В) напряжение +12В поступает на основную схему инвертора - блок контроля яркости и регулятор ШИМ.


Рис. 2. Структурная схема инвертора

Блок контроля и управления яркостью свечения ламп и ШИМ (3 на рис.2) выполнен по схеме усилителя ошибки (УО) и формирователя импульсов ШИМ. На него поступает напряжение регулятора яркости с главной платы монитора, после чего это напряжение сравнивается с напряжением обратной связи, а затем этого вырабатывается сигнал ошибки, который управляет частотой импульсов ШИМ. Эти импульсы используются для управления DC/DC-преобразователем (1 на рис. 2) и синхронизируют работу преобразователя-инвертора. Амплитуда импульсов постоянна и определяется питающим напряжением (+12 В), а их частота зависит от напряжения яркости и уровня порогового напряжения.

DC/DC-преобразователь (1) обеспечивает постоянное (высокое) напряжение, которое поступает на автогенератор. Этот генератор включается и управляется импульсами ШИМ блока контроля (3).

Уровень выходного переменного напряжения инвертора определяется параметрами элементов схемы, а его частота - регулятором яркости и характеристиками ламп подсветки. Преобразователь инвертора, как правило, представляет собой генератор с самовозбуждением. Могут использоваться как однотактные, так и двухтактные схемы.

Узел защиты (5 и 6) анализирует уровень напряжения или тока на выходе инвертора и вырабатывает напряжения обратной связи (ОС) и перегрузки, которые поступают в блок контроля (2) и ШИМ (3). Если значение одного из этих напряжений (в случае короткого замыкания, перегрузки преобразователя, пониженного уровня напряжения питания) превышает пороговое значение, автогенератор прекращает свою работу.

Как правило, на экране блок контроля, ШИМ и блок управления яркостью объединены в одной микросхеме. Преобразователь выполняется на дискретных элементах с нагрузкой в виде импульсного трансформатора, дополнительная обмотка которого используется для коммутации запускающего напряжения.

Все основные узлы инверторов выполняют в корпусах SMD-компонентов.

Существует большое количество модификаций инверторов. Применение того или иного типа определяется типом используемой в данном мониторе ЖК панели, поэтому инверторы одного типа могут встречаться у разных производителей.

Рассмотрим наиболее часто используемые типы инверторов, а также их характерные неисправности.

Инвертор типа PLCD2125207A фирмы EMAX

Этот инвертор используется в ЖК мониторах фирм Proview, Acer, AOC, BENQ и LG с диагональю экрана не более 15 дюймов. Он построен по одноканальной схеме с минимальным количеством элементов (рис.3). При рабочем напряжении 700 В и токе нагрузки 7мА с помощью двух ламп максимальная яркость экрана составляет около 250кд/м 2 . Стартовое выходное напряжение инвертора составляет 1650В, время срабатывания защиты- от 1 до 1,3с. На холостом ходу напряжение на выходе составляет 1350В. Наибольшая глубина яркости достигается при изменении управляющего напряжения DIM (конт. 4 соединителя CON1) от 0 (максимальная яркость) до 5 В (минимальная яркость). По такой же схеме выполнен инвертор фирмы SAMPO.

Рис. 3. Принципиальная схема инвертора PLCD2125207A

Описание принципиальной схемы

Напряжение +12 В поступает на конт. 1 разъема CОN1 и через предохранитель F1 - на выв. 1-3 сборки Q3 (исток полевого транзистора). Повышающий DC/DC-преобразователь собран на элементах Q3-Q5, D1, D2, Q6. В рабочем режиме сопротивление между истоком и стоком транзистора Q3 не превышает 40 мОм, при этом в нагрузку пропускается ток до 5 А. Преобразователем управляет контроллер яркости и ШИМ, который выполнен на микросхеме U1 типа TL5001 (аналог FP5001) фирмы Feeling Tech. Основным элементом контроллера является компаратор, в котором напряжение генератора пилообразного напряжения (выв. 7) сравнивается с напряжением УО, которое в свою очередь определяется соотношением между опорным напряжением 1 В и суммарным напряжением обратной связи и яркости (выв. 4). Частота пилообразного напряжения внутреннего генератора (около 300 кГц) определяется номиналом резистора R6 (подключен к выв. 7 U1). С выхода компаратора (выв. 1) снимаются импульсы ШИМ, которые поступают на схему DC/DC-преобразователя. Контроллер обеспечивает также защиту от короткого замыкания и перегрузки. При коротком замыкании на выходе инвертора возрастает напряжение на делителе R17 R18, оно выпрямляется и подается на выв. 4 U1. Если напряжение становится равным 1,6 В, запускается схема защиты контроллера. Порог срабатывания защиты определяется номиналом резистора R8. Конденсатор С8 обеспечивает «мягкий» старт при запуске инвертора или после окончания действия короткого замыкания. Если короткое замыкание длится менее 1с (время определяется емкостью конденсатора С7), то нормальная работа инвертора продолжается. В противном случае работа инвертора прекращается. Для надежного запуска преобразователя время срабатывания защиты выбирается таким, чтобы в 10…15 раз превысить время старта и «поджига» ламп. При перегрузке выходного каскада напряжение на правом выводе дросселя L1 возрастает, стабилитрон D2 начинает пропускать ток, открывается транзистор Q6 и понижается порог срабатывания схемы защиты. Преобразователь выполнен по схеме полумостового генератора с самовозбуждением на транзисторах Q7, Q8 и трансформаторе PT1. При поступлении с главной платы монитора напряжения включения питания ON/OFF (3 В) открывается транзистор Q2 и на контроллер U1 подается питание (+12 В на выв. 2). Импульсы ШИМ с выв. 1 U1 через транзисторы Q3, Q4 поступают на затвор Q3, тем самым, запускается DC/DC-преобразователь. В свою очередь, с него питание подается на автогенератор. После этого на вторичной обмотке трансформатора РТ1 появляется высоковольтное переменное напряжение, которое поступает на лампы подсветки. Обмотка 1-2 РТ1 выполняет роль обратной связи автогенератора. Пока лампы не включены, выходное напряжение преобразователя растет до напряжения пуска (1650В), а затем инвертор переходит в рабочий режим. Если лампы не удается поджечь (вследствие обрыва, «истощения»), происходит самопроизвольный срыв генерации.

Неисправности инвертора PLCD2125207А и порядок их устранения

Лампы подсветки не включаются

Проверяют напряжение питания +12 В на выв. 2 U1. Если его нет, проверяют предохранитель F1, транзисторы Q1, Q2. Если неисправен предохранитель F1, перед его заменой проверяют транзисторы Q3, Q4, Q5 на корокое замыкание.

Затем проверяют сигнал ENB или ON/OFF (конт. 3 разъема CON1) - его отсутствие может быть связано с неисправностью главной платы монитора. Проверяют это следующим способом: подают управляющее напряжение 3…5 В на вход ON/OFF от незивисимого источника питания или через делитель от источника 12В. Если при этом лампы включаются, то неисправна главная плата, в противном случае- инвертор.

Если напряжения питания и сигнал включения есть, а лампы не светятся, то проводят внешний осмотр трансформатора РТ1, конденсаторов С10, С11 и разъемов подключения ламп CON2, CON3, потемневшие и оплавленные детали заменяют. Если в момент включения на выв. 11 трансформатора РТ1 на короткое время появляются импульсы напряжения (щуп осциллографа через делитель подключается заранее, до включения монитора), а лампы не светятся, то проверяют состояние контактов ламп и отсутствие на них механических повреждений. Лампы снимают из посадочных мест, предварительно открутив винт крепления их корпуса к корпусу матрицы, и, вместе с металлическим корпусом, в котором они установлены, равномерно и без перекосов вынимают. В некоторых моделях мониторов («Aсer AL1513» и BENQ) лампы имеют Г-образную форму и охватывают панель ЖКИ по периметру, и неосторожные действия при демонтаже могут их повредить. Если лампы повреждены или потемнели (что говорит о потере их свойств), их заменяют. Заменять лампы можно только на аналогичные по мощности и параметрам, в противном случае - либо инвертор не сможет их «поджечь», либо возникнет дуговой разряд, что быстро выведет лампы из строя.

Лампы включаются на короткое время (около 1 секунды) и тут же отключаются

В этом случае вероятнее всего срабатывает защита от короткого замыкания или перегрузки во вторичных цепях инвертора. Устраняют причины срабатывания защиты, проверяют исправность трансформатора РТ1, конденсаторов С10 и С11 и цепи обратной связи R17, R18, D3. Проверяют стабилитрон D2 и транзистор Q6, а также конденсатор С8 и делитель R8 R9. Если напряжение на выв. 5 менее 1 В, то заменяют конденсатор С7 (лучше - на танталовый). Если все перечисленные выше действия не дают результата, заменяют микросхему U1.

Отключение ламп также может быть связано со срывом генерации преобразователя. Для диагностики этой неисправности вместо ламп к разъемам CON2, CON3 подключают эквивалентную нагрузку - резистор номиналом 100 кОм и мощностью не менее 10 Вт. Последовательно с ним включают измерительный резистор номиналом 10 Ом. К нему подключают приборы и измеряют частоту колебаний, которая должна быть в пределах от 54 кГц (при максимальной яркости) до 46кГц (при минимальной яркости) и ток нагрузки от 6,8 до 7,8мА. Для контроля выходного напряжения подключают вольтметр между выв.11 трансформатора PT1 и выводом нагрузочного резистора. Если измеренные параметры не соответствуют номиналу, контролируют величину и стабильность напряжения питания на дросселе L1, а также проверяют транзисторы Q7, Q8, C9. Если при отключении правого (по схеме) диода сборки D3 от резистора R5 экран засвечивается, то неисправна одна из ламп. Даже с одной рабочей лампой яркости изображения бывает достаточно для комфортной работы оператора.

Экран периодически мигает и яркость нестабильна

Проверяют стабильность напряжения яркости (DIM) на конт. 4 разъема CОN1 и после резистора R3, отключив предварительно обратную связь (резистор R5). Если управляющее напряжение на разъеме нестабильно, то неисправна главная плата монитора (проверку проводят на всех доступных режимах работы монитора и по всему диапазону яркости). Если напряжение нестабильно на выв. 4 контроллера U1, то проверяют его режим по постоянному току в соответствии с табл. 1, при этом инвертор должен находиться в рабочем режиме. Неисправную микросхему заменяют.

Таблица 1

Проверяют стабильность и амплитуду колебаний собственного генератора пилообразных импульсов (выв.7), размах сигнала должен составлять от 0,7 до 1,3 В, а частота- около 300 кГц. Если напряжение не-стабильно - заменяют R6 или U1.

Нестабильность работы инвертора может быть связана со старением ламп или их повреждением (периодическое нарушение контакта между подводящими проводами и выводами ламп). Чтобы проверить это, как и в предыдущем случае, подключают эквивалент нагрузки. Если при этом инвертор работает стабильно, то необходимо заменить лампы.

Через некоторое время (от нескольких секунд до нескольких минут) изображение пропадает

Неправильно работает схема защиты. Проверяют и при необходимости заменяют конденсатор C7, подключенный к выв. 5 контроллера, контролируют режим по постоянному току контроллера U1 (см. предыдущую неисправность). Проверяют стабильность работы ламп, измеряя уровень пилообразных импульсов на выходе схемы обратной связи, на правом аноде D3 (размах около 5 В) при установке средней яркости (50 единиц). Если имеют место «выбросы» напряжения, проверяют исправность трансформатора и конденсаторов С9, С11. В заключение проверяют стабильность работы схемы ШИМ контроллера U1.

Инвертор типа DIVTL0144-D21 фирмы SAMPO

Принципиальная схема этого инвертора приведена на рис. 4. Он применяется для питания ламп подсветки 15-дюймовых матриц фирм SUNGWUN, SAMSUNG, LG-PHILIPS, HITACHI, которые используются в мониторах PROVIEW, AСER, BENQ, SAMSUNG, LG. Рабочее напряжение- 650 В при токе нагрузке 7,5 мА (при максимальной яркости) и 4,5мА - при минимальной. Стартовое напряжение («поджиг») составляет 1900 В, частота питающего напряжения ламп - 55 кГц (при средней яркости). Уровень сигнала регулировки яркости составляет от 0 (максимальная) до 5 В (минимальная). Время срабатывания защиты - 1…4 с.


Рис. 4.

В качестве контроллера и ШИМ используется микросхема U201 типа BA9741 фирмы ROHM (ее аналог TL1451). Она является двухканальным контроллером, но в данном случае используется только один канал.

При включении монитора в сеть напряжение +12 В поступает на выв.1-3 транзисторной сборки Q203 (исток полевого транзистора). При включении монитора сигнал запуска инвертора ON/OFF (+3 В) поступает с главной платы и открывает транзисторы Q201, Q202. Тем самым напряжение +12 В подается на выв. 9 контроллера U201. После этого начинает работать внутренний генератор пилообразного напряжения, частота которого определяется номиналами элементов R204 и C208, подключенных к выв. 1 и 2 микросхемы. На выв.10 микросхемы появляются импульсы ШИМ, которые поступают на затвор Q203 через усилитель на транзисторах Q205, Q207. На выв. 5-8 Q203 формируется постоянное напряжение, которое подается на автогенератор (на элементах Q209, Q210, PT201). Синусоидальное напряжение размахом 650 В и частотой 55 кГц (в момент «поджига» ламп оно достигает 1900 В) с выхода преобразователя через разъемы CN201, CN202 подается на лампы подсветки. На элементах D203, R220, R222 выполнена схема формирования сигнала защиты и «мягкого» старта. В момент включения ламп возрастает потребление энергии в первичной цепи инвертора и напряжение на выходе DC/DC преобразователя (Q203, Q205, Q207) растет, стабилитрон D203 начинает проводить ток, и часть напряжения с делителя R220 R222 поступает на выв.11 контроллера, повышая тем самым порог срабатывания схемы защиты на время запуска.

Стабильность и яркость свечения ламп, а также защита от короткого замыкания обеспечивается цепью обратной связи на элементах D209, D205, R234, D207, C221. Напряжение обратной связи поступает на выв. 14 микросхемы (прямой вход усилителя ошибки), а напряжение яркости с главной платы монитора (DIM) - на инверсный вход УО (выв. 13), определяя частоту импульсов ШИМ на выходе контроллера, а значит, и уровень выходного напряжения. При минимальной яркости (напряжение DIM равно 5 В) она составляет 50кГц, а при максимальной (напряжение DIM равно нулю) - 60 кГц.

Если напряжение обратной связи превышает 1,6 В (выв. 14 микросхемы U201), включается схема защиты. Если короткое замыкание в нагрузке длится менее 2 с (это время заряда конденсатора С207 от опорного напряжения +2,5 В - выв. 15 микросхемы), работоспособность инвертора восстанавливается, что обеспечивает надежный запуск ламп. При длительном коротком замыкании инвертор выключается.

Неисправности инвертора DIVTL0144-D21 и методы их устранения

Лампы не светятся

Проверяют наличие напряжения +12 В на выв. 1-3 Q203, исправность предохранителя F1 (установлен на главной плате монитора). Если предохранитель неисправен, то перед установкой нового проверяют на короткое замыкание транзисторы Q201, Q202, а также конденсаторы С201, С202, С225.

Проверяют наличие напряжения ON/OFF: при включении рабочего режима оно должно быть равно 3В, а при выключении или переходе в ждущий режим - нулю. Если управляющее напряжение отсутствует, проверяют главную плату (включением инвертора управляет микроконтроллер LCD-монитора). Если все вышеперечисленные напряжения в норме, а импульсов ШИМ на выв. 10 микросхемы V201 нет, проверяют стабилитроны D203 и D201, трансформатор РТ201 (можно определить визуальным осмотром по потемневшему или оплавленному корпусу), конденсаторы С215, С216 и транзисторы Q209, Q210. Если короткое замыкание отсутствует, то проверяют исправность и номинал конденсаторов С205 и С207. В случае, если перечисленные выше элементы исправны, заменяют контроллер U201. Отметим, что отсутствие свечения ламп подсветки может быть связано с их обрывом или механической поломкой.

Лампы на короткое время включаются и гаснут

Если засветка сохраняется в течение 2 с, то неисправна цепь обратной связи. Если при отключении от схемы элементов L201 и D207 на выв. 7 микросхемы U201 появляются импульсы ШИМ, то неисправна либо одна из ламп подсветки, либо цепь обратной связи. В этом случае проверяют стабилитрон D203, диоды D205, D209, D207, конденсаторы С221, С219, а также дроссель L202. Контролируют напряжение на выв. 13 и 14 U201. В рабочем режиме напряжение на этих выводах должно быть одинаковым (около 1 В - при средней яркости). Если напряжение на выв. 14 значительно ниже, чем на выв. 13, то проверяют диоды D205, D209 и лампы на обрыв. При резком увеличении напряжения на выв. 14 микросхемы U201 (выше уровня 1,6В) проверяют элементы PT1, L202, C215, C216. Если они исправны, заменяют микросхему U201. При ее замене на аналог (TL1451) проверяют пороговое напряжение на выв. 11 (1,6 В) и, при необходимости, подбирают номинал элементов С205, R222. Подбором номиналов элементов R204, С208 устанавливают частоту пилообразных импульсов: на выв. 2 микросхемы должно быть около 200 кГц.

Подсветка выключается через некоторое время (от нескольких секунд до нескольких минут) после включения монитора

Вначале проверяют конденсатор С207 и резистор R207. Затем проверяют исправность контактов инвертора и ламп подсветки, конденсаторов С215, С216 (заменой), трансформатора РТ201, транзисторов Q209, Q210. Контролируют пороговое напряжение на выв. 16 V201 (2,5В), если оно занижено или отсутствует, заменяют микросхему. Если напряжение на выв. 12 выше 1,6В, проверяют конденсатор С208, в противном случае также заменяют U201.

Яркость самопроизвольно меняется (мигает) во всем диапазоне или на отдельных режимах работы монитора

Если неисправность проявляется только в некоторых режимах разрешения и в определенном диапазоне изменения яркости, то неисправность связана с главной платой монитора (память или контроллер LCD). Если яркость самопроизвольно меняется во всех режимах, то неисправен инвертор. Проверяют напряжение регулировки яркости (на выв. 13 U201 - 1,3 В (при средней яркости), но не выше 1,6 В). В случае, если напряжение на контакте DIM стабильно, а на выв. 13 - нет, заменяют микросхему U201. Если напряжение на выв. 14 нестабильно или занижено (менее 0,3 В при минимальной яркости), то вместо ламп подключают эквивалент нагрузки- резистор номиналом 80кОм. При сохранении дефекта заменяют микросхему U201. Если эта замена не помогла, заменяют лампы, а также проверяют исправность их контактов. Измеряют напряжение на выв.12 микросхемы U201, в рабочем режиме оно должно быть порядка 1,5В. Если оно ниже этого предела, проверяют элементы С209, R208.

Примечание. В инверторах других производителей (EMAX, TDK), выполненных по аналогичной схеме, но в которой используются другие компоненты (за исключением контроллера), вместо SI443 -> D9435, 2SС5706 -> 2SD2190, напряжение на выводах микросхемы U201 может изменяться в пределах ±0,3 В.

Этот инвертор (его принципиальная схема показана на рис. 5) применяется в 17-дюймовых мониторах AСER, ROVER SCAN с матрицами SAMSUNG, а его упрощенный вариант (рис. 6 ) - в 15-дюймовых мониторах LG с матрицей LG-PHILIPS. Схема реализована на основе 2-канального ШИМ контроллера фирмы OZ960 O2MICRO с 4-мя выходами управляющих сигналов. В качестве силовых ключей применяются транзисторные сборки типа FDS4435 (два полевых транзистора c p-каналом) и FDS4410 (два полевых транзистора с n-каналом). Схема позволяет подключить 4 лампы, что обеспечивает повышенную яркость подсветки LCD-панели.


Рис. 5

Инвертор обладает следующими характеристиками:

–напряжение питания - 12 В;

–номинальный ток в нагрузке каждого канала - 8 мА;

–частота выходного напряжения- от 30 кГц (при минимальной яркости) до 60 кГц (при максимальной яркости). Максимальная яркость свечения экрана с этим инвертором - 350 кд/м 2 ;

–время срабатывания защиты - 1…2 с.

При включении монитора на разъем инвертора поступают напряжения +12 В - для питания ключей Q904-Q908 и +6 В - для питания контроллера U901 (в варианте для монитора LG это напряжение формируется из напряжения +12 В, см. схему на рис. 6). При этом инвертор находится в дежурном режиме. Напряжение включения контроллера ENV поступает на выв. 3 микросхемы от микроконтроллера главной платы монитора. Контроллер ШИМ имеет два одинаковых выхода для питания двух каналов инвертора: выв. 11, 12 и выв. 19, 20 (рис. 5 и 6). Частота работы генератора и ШИМ определяются номиналами резистора R908 и конденсатора С912, подключенных к выв. 17 и 18 микросхемы (рис. 5 ). Резисторный делитель R908 R909 определяет начальный порог генератора пилообразного напряжения (0,3 В). На конденсаторе С906 (выв. 7 U901) формируется пороговое напряжение компаратора и схемы защиты, время срабатывания которой определяется номиналом конденсатора С902 (выв. 1). Напряжение защиты от короткого замыкания и перегрузки (при обрыве ламп подсветки) поступает на выв. 2 микросхемы. Контроллер U901 имеет встроенные схему мягкого запуска и внутренний стабилизатор. Запуск схемы мягкого запуска определяется напряжением на выв. 4 (5 В) контроллера.


Рис. 6

Преобразователь напряжения постоянного тока в высоковольтное напряжение питания ламп выполнен на двух парах транзисторных сборок р-типа FDS4435 и n-типа FDS4410 и запускается принудительно импульсами с ШИМ. В первичной обмотке трансформатора протекает пульсирующий ток, и на вторичных обмотках Т901 появляется напряжение питания ламп подсветки, подключенных к разъемам J904-J906. Для стабилизации выходных напряжений инвертора напряжение обратной связи подается через двухполупериодные выпрямители Q911-Q914 и интегрирующую цепь R938 C907 C908 и в виде пилообразных импульсов поступает на выв. 9 контроллера U901. При обрыве одной из ламп подсветки возрастает ток через делитель R930 R932 или R931 R933,а затем выпрямленное напряжение поступает на выв. 2 контроллера, превышая установленный порог. Тем самым формирование импульсов ШИМ на выв. 11, 12 и 19, 20 U901 блокируется. При коротком замыкании в контурах С933 С934 Т901 (обмотка 5-4) и С930 С931 Т901 (обмотка 1-8) возникают „всплески» напряжения, которые выпрямляются Q907-Q910 и также поступают на выв. 2 контроллера- в этом случае срабатывает защита и инвертор выключается. Если время короткого замыкания не превышает время заряда конденсатора С902, то инвертор продолжает работать в нормальном режиме.

Принципиальное отличие схем на рис. 5 и 6 в том, что в первом случае применяется более сложная схема мягкого старта (сигнал поступает на выв. 4 микросхемы) на транзисторах Q902, Q903. В схеме на рис. 6 она реализована на конденсаторе С10. В ней же используются сборки полевых транзисторов U2, U3 (р- и n-типа), что упрощает согласование их по мощности и обеспечивает высокую надежность в схемах с двумя лампами. В схеме на рис. 5 применяются полевые транзисторы Q904-Q907, включенные по мостовой схеме, что повышает выходную мощность схемы и надежность работы в режимах пуска и при больших токах.

Неисправности инвертора и способы их устранения

Лампы не включаются

Проверяют наличие напряжения питания +12 и +6 В на конт. Vinv, Vdd соединителя инвертора соответственно (рис. 5 ). При их отсутствии проверяют исправность главной платы монитора, сборок Q904, Q905, стабилитронов Q903-Q906 и конденсатора С901.

Проверяют поступление напряжения включения инвертора +5 В на конт. Ven при переводе монитора в рабочий режим. Проверить исправность инвертора можно с помощью внешнего источника питания, подав напряжение 5 В на выв. 3 микросхемы U901. Если при этом лампы включаются, то причина неисправности в главной плате. В противном случае проверяют элементы инвертора, а контролируют наличие сигналов ШИМ на выв. 11, 12 и 19, 20 U901 и, в случае их отсутствия, заменяют эту микросхему. Также проверяют исправность обмоток трансформатора Т901 на обрыв и короткое замыкание витков. При обнаружении короткого замыкания во вторичных цепях трансформатора в первую очередь проверяют исправность конденсаторов С931, С930, С933 и С934. Если эти конденсаторы исправны (можно просто отпаять их от схемы), а короткое замыкание имеет место, вскрывают место установки ламп и проверяют их контакты. Обгоревшие контакты восстанавливают.

Лампы подсветки вспыхивают на короткое время и тут же гаснут

Проверяют исправность всех ламп, а также их цепи соединения с разъемами J903-J906. Проверить исправность этой цепи можно, не разбирая блок ламп. Для этого отключают на короткое время цепи обратной связи, последовательно отпаивая диоды D911, D913. Если при этом вторая пара ламп включится - то неисправна одна из ламп первой пары. В противном случае неисправен контроллер ШИМ или повреждены все лампы. Проверить работоспособность инвертора также можно, используя вместо ламп эквивалентную нагрузку - резистор номиналом 100 кОм, включенный между конт. 1, 2 разъемов J903, J906. Если в этом случае инвертор не работает и импульсов ШИМ нет на выв. 19, 20 и 11, 12 U901, то проверяют уровень напряжения на выв. 9 и 10 микросхемы (1,24 и 1,33 В соответственно. При отсутствии указанных напряжений проверяют элементы С907, С908, D901 и R910. Перед заменой микросхемы контроллера проверяют номинал и исправность конденсаторов С902, С904 и С906.

Инвертор самопроизвольно выключается через некоторое время (от нескольких секунд до нескольких минут)

Проверяют напряжение на выв. 1 (около 0 В) и 2 (0,85 В) U901 в рабочем режиме, при необходимости меняют конденсатор С902. При значительном отличии напряжения на выв. 2 от номинального проверяют элементы в цепи защиты от короткого замыкания и перегрузки (D907-D910, C930-C935, R930-R933) и, если они исправны, заменяют микросхему контроллера. Проверяют соотношение напряжений на выв. 9 и 10 микросхемы: на выв. 9 напряжение должно быть ниже. Если это не так, проверяют емкостной делитель С907 С908 и элементы обратной связи D911-D914, R938.

Чаще всего причина подобной неисправности вызвана дефектом конденсатора C902.

Инвертор работает нестабильно, наблюдается мигание ламп подсветки

Проверяют работоспособность инвертора на всех режимах работы монитора и во всем диапазоне яркости. Если нестабильность наблюдается только в некоторых режимах, то неисправна главная плата монитора (схема формирования напряжения яркости). Как и в предыдущем случае включают эквивалентную нагрузку и в разрыв цепи устанавливают миллиамперметр. Если ток стабилен и равен 7,5 мА (при минимальной яркости) и 8,5 мА (при максимальной яркости), то неисправны лампы подсветки и их надо заменить. Также проверяют элементы вторичной цепи: Т901, С930-С934. Затем проверяют стабильность прямоугольных импульсов (средняя частота - 45 кГц) на выв. 11, 12 и 19, 20 микросхемы U901. Постоянная составляющая на них должна быть 2,7 В на Р-выходах и 2,5 В - на N-выходах). Проверяют стабильность пилообразного напряжения на выв. 17 микросхемы и при необходимости заменяют С912, R908.

Принципиальная схема инвертора SAMPO приведена на рис. 7. Он используется в 17-дюймовых мониторах SAMSUNG, AOC с матрицами SANYO, в мониторах „Proview SH 770» и „MAG HD772». Существует несколько модификаций этой схемы. Инвертор формирует выходное напряжение 810В при номинальном токе через каждую из четырех люминесцентных ламп (около 6,8мА). Стартовое выходное напряжение схемы - 1750В. Частота работы преобразователя при средней яркости - 57кГц, при этом достигается яркость экрана монитора до 300 кд/м 2 . Время срабатывания схемы защиты инвертора - от 0,4 до 1 с.


Рис. 7

Основой инвертора является микросхема TL1451AC (аналоги - ТI1451, BA9741). Микросхема имеет два канала управления, что позволяет реализовать схему питания четырех ламп. При включении монитора напряжение +12 В поступает на входы конверторов напряжения +12 В (истоки полевых транзисторов Q203, Q204). Напряжение регулировки яркости DIM поступает на выв. 4 и 13 микросхемы (инверсные входы усилителей ошибки). При поступлении от главной платы монитора напряжения включения, равного 3 В (конт. ON/OFF), открываются транзисторы Q201 и Q202 и на выв. 9 (VCC) микросхемы U201 подается напряжение +12 В. На выв. 7 и 10 появляются прямоугольные импульсы ШИМ, которые поступают на базы транзисторов Q205, Q207 (Q206, Q208), а с них - на Q203 (Q204). В результате на правых по схеме выводах дросселей L201 и L202 появляется напряжения, значение которых зависит от скважности ШИМ сигналов. Этими напряжениями питаются схемы автогенераторов, выполненных на транзисторах Q209, Q210 (Q211, Q212). На первичных обмотках 2-5 трансформаторов РТ201 и РТ202 соответственно появляется импульсное напряжение, частота которых определяется емкостью конденсаторов С213, С214, индуктивностью обмоток 2-5 трансформаторов РТ201, РТ202, а также уровнем питающего напряжения. При регулировке яркости меняется напряжение на выходах конверторов и, как следствие, частота генераторов. Амплитуда выходных импульсов инвертора определяется напряжением питания и состоянием нагрузки.

Автогенераторы выполнены по полумостовой схеме, которая обеспечивает защиту от больших токов в нагрузке и обрыве во вторичной цепи (отключении ламп, обрыве конденсаторов С215-С218). Основа схемы защиты находится в контроллере U201. Кроме того, в схему защиты входят элементы D203, R220, R222 (D204, R221, R223), а также цепь обратной связи D205 D207 R240 C221 (D206 D208 R241 C222). При повышении напряжения на выходе конвертора стабилитрон D203 (D204) пробивается и напряжение с делителя R220, R222 (R221, R223) поступает на вход схемы защиты от перегрузки контроллера U201 (выв. 6 и 11), повышая порог срабатывания защиты на время запуска ламп. Схемы обратной связи выпрямляют напряжение на выходе ламп и оно поступает на прямые входы усилителей ошибки контроллера (выв. 3, 13), где оно сравнивается с напряжением регулировки яркости. В результате изменяется частота импульсов ШИМ и яркость свечения ламп поддерживается на постоянном уровне. Если это напряжение превысит 1,6 В, то запустится схема защиты от короткого замыкания, которая сработает за время заряда конденсатора С207 (около 1 с). Если короткое замыкание длится меньше этого времени, то инвертор продолжит нормальную работу.

Неисправности инвертора фирмы SAMPO и способы их устранения

Инвертор не включается, лампы не светятся

Проверяют наличие напряжений +12В и активное состояние сигнала ON/OFF. При отсутствии +12В, проверяют его наличие на главной плате, а также исправность транзисторов Q201, Q202, Q205, Q207, Q206, Q208) и Q203, Q204. При отсутствии напряжения включения инвертора ONN/OFF, его подают от внешнего источника: +3…5В через резистор 1 кОм на базу транзистора Q201. Если при этом лампы включатся, то неисправность связана с формированием напряжения включения инвертора на главной плате. В противном случае проверяют напряжение на выв. 7 и 10 U201. Оно должно быть равно 3,8В. Если напряжение на этих выводах равно 12В, то неисправен контроллер U201 и его необходимо заменить. Проверяют опорное напряжение на выв. 16 U201 (2,5 В). Если оно равно нулю, проверяют конденсаторы С206, C205 и, если они исправны, заменяют контроллер U201.

Проверяют наличие генерации на выв. 1 (пилообразное напряжение размахом 1 В) и, в случае его отсутствия, конденсатор С208 и резистор R204.

Лампы загораются, но тут же гаснут (в течение промежутка времени менее 1 с)

Проверяют исправность стабилитронов D201, D202 и транзисторов Q209, Q210 (Q211, Q212). При этом неисправна может быть одна из пар транзисторов. Проверяют схему защиты от перегрузки и исправность стабилитронов D203, D204, а также номиналы резисторов R220, R222 (R221, R223) и конденсаторы С205, С206. Проверяют напряжение на выв. 6 (11) микросхемы контроллера (2,3 В). Если оно занижено или равно нулю, проверяют элементы С205, R222 (C206, R223). При отсутствии сигналов ШИМ на выв. 7 и 10 микросхемы U201 измеряют напряжение на выв. 3 (14). Оно должно быть на 0,1…0,2В больше, чем на выв. 4 (13), либо одинаковым. Если это условие не выполняется, проверяют элементы D206, D208, R241. При проведении указанных выше измерений лучше пользоваться осциллографом. Отключение инвертора может быть связано с обрывом или механическим повреждением одной из ламп. Для проверки этого предположения (чтобы не разбирать узел ламп) отключают напряжение +12В одного из каналов. Если при этом экран монитора начинает светиться, то неисправен отключенный канал. Проверяют также исправность трансформаторов РТ201, РТ202 и конденсаторов С215-С218.

Лампы самопроизвольно отключаются через некоторое время (от единиц секунд до минут)

Как и в предыдущих случаях, проверяют элементы схемы защиты: конденсаторы С205, С206, резисторы R222, R223, а также уровень напряжения на выв. 6 и 11 микросхемы U201. В большинстве случаев причина дефекта вызвана неисправностью конденсатора С207 (определяющем время срабатывания защиты) или контроллера U201. Измеряют напряжение на дросселях L201, L202. Если напряжение в течение рабочего цикла стабильно повышается, проверяют транзисторы Q209, Q210 (Q211, Q212) конденсаторы С213, С214 и стабилитроны D203, D204.

Экран периодически мигает и яркость подсветки экрана нестабильна

Проверяют исправность схемы обратной связи и работу усилителя ошибки контроллера U201. Измеряют напряжение на выв. 3, 4, 12, 13 микросхемы. Если напряжение на этих выводах ниже 0,7В, а на выв. 16 ниже 2,5В, то заменяют контроллер. Проверяют исправность элементов в цепи обратной связи: диоды D205, D207 и D206, D208. Подключают нагрузочные резисторы номиналом 120кОм к разъемам CON201-CON204, проверяют уровень и стабильность напряжений на выв. 14 (13), 3 (4), 6 (11). Если при подключенных нагрузочных резисторах инвертор работает стабильно, заменяют лампы подсветки.

Не секрет, что поломка телевизионного приемника может испортить настроение любому его владельцу. Возникает вопрос, где искать хорошего мастера, нужно ли везти аппарат в сервисный центр? На это нужно тратить свое время, и что немаловажно – деньги. Но, прежде чем вызывать мастера, если вы обладаете начальными знаниями по электротехнике и умеете держать в руках отвертку и паяльник, то ремонт телевизора своими руками в ряде случаев все же возможен.

Современные ЖК телевизоры стали более компактными, и их починку проводить стало намного легче. Конечно, бывают поломки, которые сложно обнаружить без специального диагностического оборудования. Но чаще всего встречаются неисправности, которые можно обнаружить даже визуально, например, вздувшиеся конденсаторы . При такой поломке достаточно выпаять их и заменить на новые с такими же параметрами.

Все телеприемники одинаковы по своему устройству и состоят из блока питания (БП), материнской платы и модуля подсветки LCD (используются лампы) или ЛЕД (используются светодиоды). Материнку самостоятельно чинить не стоит, а БП и лампы подсветки экрана – вполне возможно.

Ремонт блока питания

Нет ТВ сигнала

При ремонте телевизоров LG, Sharp c ЖК дисплеем, Рубин, Горизонт с такими же экранами, часто возникает ситуация, когда при вполне исправном аппарате не происходит его включение. Оказывается, причиной может послужить в антенном кабеле. Происходит это из-за срабатывания защиты шумоподавления (в теликах Рубин, ее стали ставить не так давно), и агрегат переходит в режим ожидания. Поэтому, если вы обнаружили свой телик в нерабочем состоянии, не стоит паниковать, а требуется проверить наличие сигнала от передающей станции.

В заключение можно сказать — когда вы принимаете решение о самостоятельном ремонте телеприемника, следует трезво оценивать свои способности и знания в этом деле. Если вы чувствуете себя не уверенно, то лучше это дело доверить телемастеру, тем более, что 220 В никто не отменял, и незнание элементарных правил безопасности может повлечь за собой неприятные последствия.

Данный обзор является , но так как делать два обзора подряд, да еще и на один и тот же товар несколько нелогично и некорректно, то по крайней мере начало будет посвящено одной из интересных частей, купленных для будущего блока питания.

Дисплей был куплен в магазине, куда я пришел ножками, но магазин торгует и онлайн, потому формально он попадает под правила сайта.

Еще во время продумывания конструкции будущего блока питания я решал, какой индикатор применить.
Выбор был большой, сначала я выбирал из вариантов:
1. Оставить родной. - мелкий и совсем простой.
2. Индикатор по технологии . - классно, но не очень бюджетно, цена около 10 долларов.
3. Вакуумный (VFD) дисплей. Ну это вообще супер, но цена еще больше, а доставаемость еще меньше, так как водятся они в основном . Основной плюс в больших углах обзора и винтажности. Чаще всего попадаются формата 2002, а мне надо было 1602.

Придя в магазин я все таки решил купить индикатор по технологии VATN. Это индикаторы с повышенной контрастностью, гораздо лучше привычных LCD.

Но когда я прикинул как он будет выглядеть на передней панели, то понял что он мне не подходит, слишком маленький.
Прикидывал внешний вид я на бумаге, потому купленный индикатор даже не распаковывал.
Решение было одно, ставить дисплей большого размера. Т.е. формула та же самая, две строки и 16 символов на строку, но с большей диагональю.
Тем более, что почитав внимательнее форумы я узнал, что на самом деле не все так гладко с дисплеями VATN. Вроде и контрастность хорошая, и углы обзора, но все равно ему присущи недостатки LCD дисплеев, которым он в принципе и является.
Например углы обзора большие, но яркость плывет и уже не так красиво смотрится.
Хотя если сравнивать с обычным LCD, то разница будет явно в лучшую сторону.

Вариантов также было несколько.
1. Дешевый (относительно) большой . - совсем плохо, изображение отвратное.
2. Тот же дисплей по технологии VATN, но . - выяснилось что такие существуют, но купить его почти нереально, я смог найти его в продаже только там, где не могу купить, и то под заказ.
3. VFD дисплей. - купить его более реально чем VATN, но цена конская, а доставаемость всего немного выше чем у большого VATN.
4. Дисплей по технологии OLED. - Ну здесь оказалось все красиво за исключением цены. Хотя нет, нюанс был, позже напишу.

Зеленая внутри меня долго упиралась лапками, 35 баксов за дисплей, это очень круто.
Но в голове крутилась цитата из фильма «Назад в будущее» -

Марти МакФлай: Ты что, сделал машину времени… из DeLorean?
Эмметт Браун: Я так понимаю: если уж делать машину времени, то делать со вкусом!

Для начала отличия всех четырех типов дисплеев друг от друга.

Когда зеленая сдалась, то я решил сначала поискать этот дисплей в других магазинах, но увы, ни в Китае, ни на Ебее их нет. Вообще выбор дисплеев по технологии OLED представляет из себя жалкое зрелище, масюпусечные дисплеи размером с почтовую марку, ну может чуть больше, и ВСЕ. Самый максимум, в размерах привычного дисплея 1602, но это точно все, больше не попадалось, да и цена была также немаленькой.
К моему большому удивлению дисплей я обнаружил в том же магазине где до этого купил предыдущий VATN. Цена была большой, но она точно была меньше чем в других местах.
Взял предыдущий дисплей и чек, пошел в магазин, поменяли без проблем, естественно с доплатой.
Но так как перед этим я проштудировал интернет, то я уже знал об особенности контроллера этих дисплеев.
Дело в том, что формально дисплей работает не как 1602, а как матричный и контроллер работает в режиме эмуляции привычного всем контроллера HD44780, но иногда не совсем корректно.
Можно изменить немного программу прибора и исправить ошибку и будет все ОК, но я то изменить прошивку не мог, потому заранее объяснил проблему и предупредил что попробую и если «не взлетит» то верну.

Дисплей действительно большой.
Размеры 122 x 44 x 10 мм. Модель дисплея , ссылка на .
Есть нюанс с подключением.
Нумерация контактов привычного дисплея установленного на плате преобразователя идет так -
1, 2, 3,15, 16.
У нового дисплея нумерация контактов немного другая:
14, 13, 12,2, 1, 15, 16.
Это стоит учитывать при подключении.

Так как возврат оговаривался при условии что дисплей не будет паяться, то подключал «беспаечным» методом.
Но все прошло отлично, ну почти отлично.
Дело в том, что когда на экране отображается курсор, то по всем местам где бывает курсор он вспыхивает на долю секунды в хаотичном порядке.
Сначала я грешил на несовместимость дисплея с платой, но потом понял, это тот случай когда благо пошло во зло.
Дело в том, что дисплей очень «шустрый», время реакции около 10мкс, что на несколько порядков быстрее чем у обычного LCD. А если присмотреться, то даже с LCD видно небольшое помаргивание курсора, просто неактивные не успевают отобразиться за счет большой инерционности LCD, а в OLED успевают. Не скажу что это совсем плохо, просто это заметно в определенных режимах.

Потребляет OLED дисплей примерно 40мА, но в отличии от других типов дисплеев ток потребления зависит от количества включенных сегментов. Чем больше сегментов включено, тем больше ток потребления.
Питание дисплея может быть в диапазоне 3.3-5 Вольт.
Когда подключил через длинный кабель, то появился интересный эффект, дисплей включается плавно, как вакуумный.

Цвет напоминает старый добрый VFD

Но какие у этого дисплея углы обзора, за них я готов простить и высокую цену и помаргивающий курсор. Соревноваться с ним может только VFD, и то не факт что победит. А контраст, яркие символы на абсолютно черном фоне без всяких светофильтров.
Я не смог подобрать такой угол при котором изображения не видно. Либо оно читается, либо просто «скрывается за горизонтом».
На последнем фото немного видно матрицу.

Закончив с дисплеем я решил что будет лучше, если я сделаю заодно и фильтр от помех, которые дает ШИМ преобразователя.
Хоть производитель и пишет о низких пульсациях (относительно), но я решил улучшить конструкцию, так как считаю плату данного преобразователя скорее «полуфабрикатом».

В общем решено было сделать фильтр от пульсаций по выходу.
Я не стремился сделать большой фильтр, хотя и имею дома все необходимые комплектующие, а ограничиться простым вариантом.
Фильтр я делал по такой схеме:

1.2 Для этого взял пару колечек от АТХ блоков питания (обычно у радиолюбителей их водится достаточное количество).
3. Я выбрал кольца с диаметром около 28мм, смотал с них все обмотки.
4. Так как у меня дома не очень много провода большого сечения, то просто выпрямил провода которые снял.


.
.

Ну и на всякий случай печатная плата фильтра и дополнение

Небольшое отступление насчет двухобмоточного дросселя.
Что он из себя представляет и как наматывается.
Я мотал одинарным проводом диаметром около 1.7мм. наматывать очень тяжело, так как провод совсем не гибкий.


Также была изготовлена и печатная плата клавиатуры. Кнопки + и - уже поменяны местами для более привычного управления.
Подключаться клавиатура может двумя способами.
Шесть проводов, резисторы не устанавливаем.
Три провода, надо установить резисторы по 100 Ом. В этом случае подключаются только контакты 1, 2 и 6.
Я использовал трехпроводный вариант подключения.

Печатная плата клавиатуры. Сначала я заложил дешевые кнопки, но случайно купил кнопки подороже, а у них расстояние между контактами шире, потому приложен измененный вариант, можно ставить любые большие кнопки.


Первый дроссель намотан просто в два провода диаметром 1.4-1.5мм (7 витков), второй одинарным проводом с диаметром около 1.7мм (две обмотки по 4 витка)

Было изготовлено еще несколько плат, но о них немного позже.

Раз уж я перешел к органам управления, то скажу пару слов о примененном энкодере.
Я купил энкодер производства BOURNS, ссылка на .
А также большую диаметром 30мм, меньшая просто не смотрелась бы.

Данный энкодер имеет довольно приличные габариты, но мне он был просто удобен по цене (меньше доллара) и длине ручки.
Ну и кроме того у него была резьба, что очень удобно, так как у найденного дома резьба отсутствовала. Как впрочем и у того, что установлен на плате.

Дальше шел этап подготовки передней панели, ну здесь все стандартно. Распечатал несколько вариантов, прикинул как это будет выглядеть в реальности, выбрал один более менее приемлемый.
Вообще дизайн передней панели очень похож на дизайн предыдущего блока питания, но в этот раз я поместил светодиоды слева от экрана, мне так показалось более удобным.

Насверлил отверстия, вырезал окошки, попутно подгоняя размеры под требуемые.
Подгонять пришлось потому, что боялся сделать слишком большие отверстия под дисплей и кнопку, а попытка была всего одна, вторая стоила бы 30 долларов, либо пришлось бы мириться с шатающейся кнопкой или неправильно установленным индикатором.

В процессе я наступил на очередные грабли. Энкодер работал хорошо, но он не имел фиксации, т.е. ручка крутилась плавно. Это хорошо для регулятора громкости, но не для прибора, где удобно щелчками отсчитывать изменение не глядя на экран.
В общем заехал на рынок и купил еще один энкодер того же производителя, но на этот раз уже в другом месте. Теперь цена была заметно больше, еще 2.5 бакса к затратам, так мало того, продавцы еще и сперли крепежную гайку с шайбой.
В этом месте я уже когда то купил поддельную TOP250Y (это было в одном из моих обзоров), ну как так можно? Заметил это я уже дома, но так как гайка была на предыдущем энкодере, то просто забил на это, пускай оставят себе на память.

Так как дисплей довольно недешевый, то я решил сделать ему небольшую защиту.
Для этого сначала проклеил по периметру тонкий двухсторонний скотч.

Это фото особо не имеет отношения к обзору, просто понравился кадр где хорошо видно матрицу дисплея.

После этого вырезал кусочек прозрачного пластика, оставшегося после какой то упаковки, то ли гарнитуры, то ли корпуса для внешнего жесткого диска.
Получившееся окошко приклеил через двухсторонний скотч предварительно тщательно протерев и убрав пыль.
Конечно видны небольшие потертости, и пострадала контрастность, но повредить дисплей стало гораздо сложнее.
В свете вспышки выглядит хуже чем в реальности.

В процессе сборки я решил что не буду крепить ничего к передней панели при помощи сквозных отверстий, потому дисплей крепился к прокладкам вырезанным из пластмассы, которая осталась после вырезания окна под него же:)
Ну а зачем пускать в отходы то, что можно использовать. Правда пришлось проложить дополнительно шайбы толщиной около 0.5мм, после этого плоскость дисплея стала вровень с плоскостью передней панели.

1. С платой клавиатуры было немного сложнее.
Из тех же остатков пластмассы я сделал четыре стойки, каждая состояла из трех слоев, но мне все равно немного не хватало. помогли мне обрезки от корпуса блока питания, которые я вырезал чтобы сдвинуть их ближе к задней панели, я потому и писал, что лучше не выбрасывать их, могут еще пригодиться:)
2.3.4 Когда я трассировал плату выходного фильтра, то у меня совсем из головы вылетело что я купил предохранитель и хотел поставить защитные диоды.
Пришлось выполнить это все на плате, которая будет прикручиваться к выходным клеммам.
Схему рисовать смысла нет, выход подключен через предохранитель, а со стороны блока питания параллельно выходу стоит пара диодов КД213.
Функция данного узла в том, чтобы при подключении аккумулятора в неправильной полярности выжечь предохранитель.
На плате преобразователя уже стоит защитный диод, но мне он показался слабым, потому я решил его продублировать.
В качестве клемм для предохранителя использовались обычные 6.3мм клеммы, но впаянные в плату.

Трассировка платы клемм. На ней разведено место для установки двух типов диодов, КД213 и диодных сборок в корпусе ТО220.
Также на ней присутствуют дополнительные площадки для подключения провода обратной связи.

Так как я придерживался концепции удобства обслуживания, то все соединения делались разъемными. Для этого было куплено несколько разных разъемов.
Для подключения индикатора я использовал большие -
Для всех остальных соединений маленькие - .
Также я использовал цветной кабель для удобства подключения. Энкодер подключал через экранированный кабель 4х0.22, так как наводки на эту линию чреваты последствиями.

Плату светодиодов я крепил в корпусе несколько необычно.
Для этого подобрал на рынке специальные обоймы. Изначально они нужны для декоративного оформления, но прекрасно справляются с фиксацией платы с корпусе.
Принцип работы очень прост.
Сверлим отверстие 6.5-7мм
Одеваем на светодиод кольцо
Вставляем в корпусное отверстие декоративную часть
Вставляем светодиод в декоративную часть
Надвигаем кольцо на декоративную часть до упора, все.

В принципе плата индикации предельно проста и можно даже ее не делать, а просто подключить светодиоды проводами, это гораздо проще.
Но есть один небольшой нюанс.
Дело в том, что светодиоды нужны с большой яркостью, так как ток через них очень мал.
Причем этот ток простым уменьшением номинала резистора увеличить нельзя, совсем.
Единственный светодиод, яркость которого можно легко поднять это индикация режима CV.
Если уменьшить номинал резистора к светодиоду активности выхода, то не будет включаться подача напряжения на выход (если правильно помню).
А если уменьшить номинал резистора к светодиоду СС, то на дисплее перестанет отображаться этот режим.

Как и в прошлый раз я применял светодиоды трех цветов, красный, зеленый и желтый.
И если первые два типа можно купить без проблем, то найти яркий желтый светодиод оказалось проблематично, я даже не помню где я его покупал в прошлый раз.
Поэтому я решил убрать эту проблему в корне.
Так как на плату индикации приходит общий провод и питание 5 вольт, то я поставил транзистор и пару резисторов, благодаря чему можно использовать любой светодиод для отображения режима - включено.

Схема включения выглядит так

Печатная плата

Можно сказать что блок почти готов, был конечно мелкий нюанс, заключающийся в том, что пришлось провести заново калибровку клавиатуры, но в остальном все завелось с первого включения.
Передняя панель оформлена во временном варианте, но я все равно решил хоть немного ее улучшить перенеся в программу FDSIGNER и изменив шрифты надписей.

Плата с предохранителем прикручена прямо к выходным клеммам.
Не назову такое решение самым лучшим, но особо вариантов у меня не было.
Не забываем, что силовые провода лучше делать не очень длинными. Я применил провод сечением 6мм.кв, длину оставил такой, чтобы можно было при необходимости отогнуть переднюю панель и открутить плату.

Силовые и сигнальные провода лучше разнести на максимальное расстояние друг от друга.
Я уже получил как то проблему, когда у меня проходили рядом провода от энкодера и силовые, потому лучше не повторять ошибок.

Уже в самом конце сборки я занялся организацией связи с компьютером.
Для беспроводной связи была заказана пара модулей Bluetooth, а для кабельного соединения я использовал входящий в комплект адаптер.
USB-RS232 ttl конвертер выполнен с применением распространенной микросхемы PL2303, здесь тяжело рассказать что то новое.

Модули Bluetooth мне дали для обзора, собственно потому я заказал пару разных, но по факту я пока так и не понял чем они отличаются, внешне просто близнецы братья.
Первый продается как , второй как .

По каким то причинам модуль HC06 не захотел со мной «дружить», потому я просто сразу перешел к работе с модулем HC05.
Я все таки попытаюсь разобраться, почему не заработал один из модулей, хотя он умеет бодро моргать светодиодом, но отзываться не хочет.

Но внешне модули действительно одинаковые, второй мне даже пришлось пометить маркером, чтобы не перепутать их.
Возможно он будет принимать участие в каком нибудь обзоре, когда разберусь что ему надо:)

Плата преобразователя может работать через такие модули, но как показала практика, родное ПО через них не работает, хотя есть информация, что при использовании в компьютере модуля Bluetooth версии 4.0 работает все корректно, но у меня адаптеры с версией 2.0 и с ними штатное ПО работать отказывается.

Схема платы адаптера и трассировка

Я начертил схему платы адаптера для подключения к компьютеру.
На плате расположена микросхема гальванической развязки, а также диодная развязка, позволяющая использовать подключение через USB и Bluetooth без механической коммутации.
На схеме все внешние контакты обозначены так, как они называются на том устройстве, которое подключается к этой плате.

По этой схеме было страссировано два варианта печатной платы, отличие в разводке подключения к адаптеру USB-RS232.
Обычные адаптеры с Али имеют немного другую разводку печатной платы чем тот, что шел в комплекте с преобразователем.
Поэтому я сделал два варианта, первый под комплектный, второй под тот что продается на Али (я уже как то обозревал такой).
В обоих вариантах все платы могут напаиваться друг на друга, последовательность контактов соблюдена.
Но на Bluetooth модулях бывает 4 контакта или 6.
Если используется 4 контактный, то просто подключается как есть, если 6 контактов, то крайние контакты не используются.


Тем не менее я все равно смог их проверить при помощи самодельного ПО, хотя и недописанного (теперь точно придется этим заниматься).

Но на самом деле эксперимент был в другом.
Если внимательно посмотреть на это фото, то можно увидеть, что к плате одновременно подключены оба интерфейса, USB и Bluetooth.
В этом и заключался эксперимент.
Подключение по USB было организовано таким же образом как и в этом обзоре, с использованием микросхемы, обеспечивающей гальваническую развязку.
А вот Bluetooth был подключен параллельно, с использованием двух диодов и резистора.
Идея заключалась в том, чтобы была возможность пользоваться каким то одним интерфейсом без переключения. И идея сработала.
Можно использовать и соединение по кабелю и Bluetooth, но естественно активным может быть только какое то одно.

Так как эксперимент удался, то я приклеил к плате полоску из пластмассы, заизолировал термоусадкой и закрепил на задней панели изнутри. Из-за того что корпус металлический, то это была вынужденная мера.

На выбор есть два варианта ПО.
Старое, которое нормально работает с платами 6020, и новое, которое работает с платой 6020, хотя изначально рассчитано только под платы 6005.
Вообще несколько странная ситуация, ПО выпускается для каждой из плат отдельно, хотя по сути протокол одинаковый для всех плат.
Разница только в том, что для каждой платы в ПО свой максимальный ток, и если подключиться к плате 6020 используя ПО от 6005, то нельзя будет выставить ток более 5.2 Ампера.
Но кроме этого есть и второй недостаток, ток при этом будет указываться как 1/10 от реального. Это происходит из-за того, что у 6005 ток выставляется кратно 1мА, а у 6010 и 6020 кратно 10мА.

В самую последнюю очередь я подключил провода обратной связи.
Плата может работать с четырехпроводным (или трехпроводным) подключением нагрузки, это означает, что она может компенсировать падение напряжения на силовых проводах, при больших токах это актуально.
Для этого надо убрать две перемычки из припоя и подать на разъем питание с выходных клемм (ну или максимально удаленной точки).
Для уменьшения помех я использовал плотно свитый провод, на который надел изоляцию от кабеля 4х0.22. Собственно и провода были от этого кабеля.
Будьте очень внимательны при подключении этого провода, если не будет контакта, то на выход будет подано полное напряжение независимо от того что установлено.
Если не уверены, то просто не используйте эту возможность блока питания, характеристики будут чуть хуже, но безопасность выше.

Все, блок питания полностью собран. Осталось только закрыть крышку.



Несколько фото того, что получилось в итоге.



Задняя панель практически пустая, я даже не стал делать надписи, так как что то включить неправильно не представляется возможным, все понятно и так:)

1. Последним этапом была установка ограничения максимальной выходной мощности в 700 Ватт.
2. На этом фото виден эффект, когда включается курсор в не том месте. попал на фото случайно, так как вспыхивает на очень короткое время.
3, 4. Через пять минут после включения отображает температуру около 30 градусов, но через час - полтора прогревается до 42-43 градусов без нагрузки, после включения вентилятора температура довольно быстро снижается до прежнего значения.

В процессе экспериментов я в итоге переключил обратную связь (см выше) в штатный режим, измерение напряжение на выходных клеммах платы. Сделал это из-за того, что при нагрузке более 50-60 Ватт появлялся посторонний звук, буду разбираться в причинах, пока подозрение на то, что обратную связь я взял после двухобмоточного дросселя.

Не обошлось и без небольшого тестирования.
В основном мне было интересно посмотреть какие пульсации на выходе БП.
Производитель заявляет 50мВ при напряжении 12 Вольт, токе 8 Ампер и входном напряжении 54 Вольта.
У меня все соответствовало кроме того что входное напряжение было 68 Вольт и после платы стоял фильтр.
1. При заданных параметрах пульсации были заметно больше даже с учетом фильтра после платы. У меня вышло около 110мВ.
2. Что интересно, при увеличении выходного напряжения, напряжение пульсаций уменьшается.
А что еще более интересно, то что частота пульсаций не 150 кГц, а около 300кГц.

Дальше я выставил ток 10 Ампер (примерно 50% от максимума) и проверил при напряжении 30 и 40 Вольт
1. При выходной мощности около 320 Ватт пульсации составили около 60мВ.
2. Дальше я поднял выходную мощность до 400 Ватт, пульсации выросли до 70-80мВ.
Это была максимальная мощность, которую может рассеивать электронная нагрузка и то недолго.
Как по мне, то пульсации великоваты, есть куда стремиться в доработках.

Зависимость максимального выходного тока от выходного напряжения у получившегося блока питания


Сравнительный вид старого и нового блока питания.

Ну вот пока на этом все. Вполне возможно что где то в марте будет третья часть, где я расскажу о доработках и переделках, но пока основная часть закончена, теперь надо чтобы блок питания прошел проверку временем.

В процессе тестов вылезли некоторые дополнительные минусы платы.
1. Пульсации явно больше заявленных. по крайней мере при выходной мощности около 100 Ватт.
Скорее всего это обусловлено тем, что хоть StepDown и может работать в большом диапазоне, но все упирается в дроссель. Для разных мощностей (и разницы вход/выход) должна быть разная индуктивность дросселя.
2. Четырехпроводное подключение обратной связи я не смог нормально запустить.
Точность поддержания напряжения была выше, но появился дополнительный звук (в штатном режиме преобразователь работает бесшумно).
Я думаю что это происходит из за того, что в цепи стоит двухобмоточный дроссель, буду разбираться с проблемой.
3. Вентилятор. Он шумит постоянно пока работает БП. С этим надо что то делать.
4. Кроме того оказалось, что все таки автоотключение при перегреве работает, но так как я переделал измерение температуры, то работает оно теперь некорректно, т.е. наоборот.
В общем пока выходит, либо нормальное отображение температуры, либо нормально работает аварийное отключение, но тогда надо переводить значения в понятный вид.
Здесь каждый решает для себя сам. Возможен альтернативный вариант, переделать схему так, чтобы значения в градусах соответствовали, но отсчитывались в обратную от 100 градусов сторону.

В остальном пока проблем не выявлено, все работает как и планировалось.
Если хочется больше мощности, то просто надо установить блок питания мощнее и либо убрать лимит максимальной мощности вообще, либо установить требуемый для выбранного БП.

Обзор получился очень большим, я изначально даже и не предполагал что так выйдет, но так увлекся описанием процесса, хотелось рассказать много, что в итоге это вылилось в два обзора вместо одного.
Я не думаю что много людей решит повторить всю эту конструкцию в полном варианте, но возможно будут полезны отдельные моменты, которые можно применить в своих проектах и разработках, собственно на это и был расчет.

Вроде все, наверняка сделал кучу ошибок, потому буду рад дополнениям и вопросам, да и просто комментариям.
Надеюсь, что обзор будет полезен.