Изобрази логическую схему для следующего выражения. Построение функциональных логических схем по заданным функциям. Задание для выполнения контрольной работы

Лабораторная работа № 2. Алгебра логики

Цель работы

Изучить основы алгебры логики.

Задачи лабораторной работы

В результате прохождения занятия студент должен:

    • определения основных понятий (простое и сложное высказывания, логические операции, логические выражения, логическая функция);
    • порядок выполнения логических операций;
    • алгоритм построения таблиц истинности;
    • схемы базовых логических элементов;
    • законы логики и правила преобразования логических выражений;
    • применять загоны логики для упрощения логических выражений;
    • строить таблицы истинности;
    • строить логические схемы сложных выражений.

Общие теоретические сведения

Основные понятия алгебры логики

Логической основой компьютера является алгебра логики, которая рассматривает логические операции над высказываниями.

Алгебра логики – это раздел математики, изучающий высказывания, рассматриваемые со стороны их логических значений (истинности или ложности) и логических операций над ними.

Логическое высказывание – это любое повествовательное предложение, в отношении которого можно однозначно сказать, истинно оно или ложно.

Пример. «3 – простое число» является высказыванием, поскольку оно истинно.

Не всякое предложение является логическим высказыванием.

Пример. предложение «Давайте пойдем в кино» не является высказыванием. Вопросительные и побудительные предложения высказываниями не являются.

Высказывательная форма – это повествовательное предложение, которое прямо или косвенно содержит хотя бы одну переменную и становится высказыванием, когда все переменные замещаются своими значениями.

Пример. «x+2>5» - высказывательная форма, которая при x>3 является истинной, иначе ложной.

Алгебра логики рассматривает любое высказывание только с одной точки зрения – является ли оно истинным или ложным. Слова и словосочетания «не», «и», «или», «если..., то», «тогда и только тогда» и другие позволяют из уже заданных высказываний строить новые высказывания. Такие слова и словосочетания называются логическими связками .

Высказывания, образованные из других высказываний с помощью логических связок, называются составными (сложными). Высказывания, которые не являются составными, называются элементарными (простыми).

Пример. высказывание «Число 6 делится на 2» - простое высказывание. Высказывание «Число 6 делится на 2, и число 6 делится на 3» - составное высказывание, образованное из двух простых с помощью логической связки «и».

Истинность или ложность составных высказываний зависит от истинности или ложности элементарных высказываний, из которых они состоят.

Чтобы обращаться к логическим высказываниям, им назначают имена.

Пример. Обозначим через А простое высказывание «число 6 делится на 2», а через В простое высказывание «число 6 делится на 3». Тогда составное высказывание «Число 6 делится на 2, и число 6 делится на 3» можно записать как «А и В». Здесь «и» – логическая связка, А, В – логические переменные, которые могут принимать только два значения – «истина» или «ложь», обозначаемые, соответственно, «1» и «0».

Каждая логическая связка рассматривается как операция над логическими высказываниями и имеет свое название и обозначение (табл. 1).

Таблица 1. Основные логические операции


НЕ
Операция, выражаемая словом «не», называется отрицанием и обозначается чертой над высказыванием (или знаком). Высказывание А истинно, когда A ложно, и ложно, когда A истинно.

Пример. Пусть А=«Сегодня пасмурно», тогда А=«Сегодня не пасмурно».

И Операция, выражаемая связкой «и», называется конъюнкцией (лат. conjunctio – соединение) или логическим умножением и обозначается точкой « » (может также обозначаться знаками или &). Высказывание А В истинно тогда и только тогда, когда оба высказывания А и В истинны.

Пример. Высказывание «Число 6 делится на 2, и число 6 делится на 3» - истинно, а высказывание «Число 6 делится на 2, и число 6 больше 10» - ложно.

ИЛИ Операция, выражаемая связкой «или» (в неисключающем смысле этого слова), называется дизъюнкцией (лат. disjunctio – разделение) или логическим сложением и обозначается знаком

(или плюсом). Высказывание А В ложно тогда и только тогда, когда оба высказывания А и В ложны.

Пример: Высказывание «Число 6 делится на 2 или число 6 больше 10» - истинно, а высказывание «Число 6 делится на 5 или число 6 больше 10» - ложно.

ЕСЛИ … ТО Операция, выражаемая связками «если …, то», «из … следует», «... влечет …», называется импликацией (лат. implico – тесно связаны) и обозначается знаком → . Высказывание А→В ложно тогда и только тогда, когда А истинно, а В ложно.

Пример. Высказывание «если студент сдал все экзамены на «отлично», то он получит стипендию». Очевидно, эту импликацию следует признать ложной лишь в том случае, когда студент сдал на «отлично» все экзамены, но стипендии не получил. В остальных случаях, когда не все экзамены сданы на «отлично» и стипендия получена (например, в силу того, что студент проживает в малообеспеченной семье) либо когда экзамены вообще не сданы и о стипендии не может быть и речи, импликацию можно признать истинной.

РАВНОСИЛЬНО Операция, выражаемая связками «тогда и только тогда», «необходимо и достаточно», «... равносильно …», называется эквиваленцией или двойной импликацией и обозначается знаком ↔ или ~ . Высказывание А↔В истинно тогда и только тогда, когда значения А и В совпадают.

Пример: Высказывание «Число является четным тогда и только тогда, когда оно делится без остатка на 2» является истинным, а высказывание «Число является нечетным тогда и только тогда, когда оно делится без остатка на 2» - ложно.

ЛИБО … ЛИБО Операция, выражаемая связками «Либо … либо», называется исключающее ИЛИ или сложением по модулю 2 и обозначается XOR или . Высказывание А В истинно тогда и только тогда, когда значения А и В не совпадают.

Пример. Высказывание «Число 6 либо нечетно либо делится без остатка на 2» является истинным, а высказывание «Либо число 6 четно либо число 6 делится на 3» – ложно, так как истинны оба высказывания входящие в него.

Замечание. Импликацию можно выразить через дизъюнкцию и отрицание:

Эквиваленцию можно выразить через отрицание, дизъюнкцию и конъюнкцию:

Исключающее ИЛИ можно выразить через отрицание, дизъюнкцию и конъюнкцию:

Вывод. Операций отрицания, дизъюнкции и конъюнкции достаточно, чтобы описывать и обрабатывать логические высказывания.

Порядок выполнения логических операций задается круглыми скобками. Но для уменьшения числа скобок договорились считать, что сначала выполняется операция отрицания («не»), затем конъюнкция («и»), после конъюнкции – дизъюнкция («или») и исключающего или и в последнюю очередь – импликация и эквиваленция.

С помощью логических переменных и символов логических операций любое высказывание можно формализовать, то есть заменить логической формулой (логическим выражением).

Логическая формула - это символическая запись высказывания, состоящая из логических величин (констант или переменных), объединенных логическими операциями (связками).

Логическая функция - это функция логических переменных, которая может принимать только два значения: 0 или 1. В свою очередь, сама логическая переменная (аргумент логической функции) тоже может принимать только два значения: 0 или 1.

Пример . – логическая функция двух переменных A и B.

Значения логической функции для разных сочетаний значений входных переменных – или, как это иначе называют, наборов входных переменных – обычно задаются специальной таблицей. Такая таблица называется таблицей истинности .

Приведем таблицу истинности основных логических операций (табл. 2)

Таблица 2

A B

Опираясь на данные таблицы истинности основных логических операций можно составлять таблицы истинности для более сложных формул.

Алгоритм построения таблиц истинности для сложных выражений:

  • количество строк = 2 n + строка для заголовка,
  • n - количество простых высказываний.
  • количество столбцов = количество переменных + количество логических операций;
  • определить количество переменных (простых выражений);
  • определить количество логических операций и последовательность их выполнения.

Пример 1. Составить таблицу истинности для формулы И–НЕ, которую можно записать так: .

1. Определить количество строк:

На входе два простых высказывания: А и В, поэтому n=2 и количество строк =2 2 +1=5.

2. Определить количество столбцов:

Выражение состоит из двух простых выражений (A и B) и двух логических операций (1 инверсия, 1 конъюнкция), т.е. количество столбцов таблицы истинности = 4.

3. Заполнить столбцы с учетом таблиц истинности логических операций (табл. 3).

Таблица 3. Таблица истинности для логической операции


Примечание: И–НЕ
называют также «штрих Шеффера» (обозначают |) или «антиконъюнкция» ; ИЛИ–НЕ называют также «стрелка Пирса» (обозначают ↓) или «антидизъюнкция» .


Пример 2.
Составить таблицу истинности логического выражения .


Решение:

1. Определить количество строк:

На входе два простых высказывания: А и В, поэтому n=2 и количество строк=2 2 +1= 5.

2. Определить количество столбцов:

Выражение состоит из двух простых выражений (A и B) и пяти логических операций (2 инверсии, 2 конъюнкции, 1 дизъюнкция), т.е. количество столбцов таблицы истинности = 7.

Сначала выполняются операции инверсии, затем конъюнкции, в последнюю очередь операция дизъюнкции.

3. Заполнить столбцы с учетом таблиц истинности логических операций (табл. 5).

Таблица 5. Таблица истинности для логической операции
Поскольку любая логическая операция может быть представлена в виде комбинации трех основных, любые устройства компьютера, производящие обработку или хранение информации, могут быть собраны из базовых логических элементов, как из “кирпичиков”.

Логические элементы компьютера оперируют с сигналами, представляющими собой электрические импульсы. Есть импульс – логический смысл сигнала – 1, нет импульса – 0. На входы логического элемента поступают сигналы-значения аргументов, на выходе появляется сигнал-значение функции.

Преобразование сигнала логическим элементом задается таблицей состояний, которая фактически является таблицей истинности, соответствующей логической функции, только представлена в форме логических схем. В такой форме удобно изображать цепочки логических операций и производить их вычисления.

Алгоритм построения логических схем.

  1. Определить число логических переменных.
  2. Определить количество логических операций и их порядок.
  3. Изобразить для каждой логической операции соответствующий ей логический элемент.
  4. Соединить логические элементы в порядке выполнения логических операций.

Пример. По заданной логической функции построить логическую схему.

Решение.

  1. Число логических переменных = 2 (A и B).
  2. Количество операций = 5 (2 инверсии, 2 конъюнкции, 1 дизъюнкция). Сначала выполняются операции инверсии, затем конъюнкции, в последнюю очередь операция дизъюнкции.
  3. Схема будет содержать 2 инвертора, 2 конъюнктора и 1 дизъюнктор.
  4. Построение надо начинать с логической операции, которая должна выполняться последней. В данном случае такой операцией является логическое сложение, следовательно, на выходе должен быть дизъюнктор. На него сигналы подаются с двух конъюнкторов, на которые, в свою очередь, подаются один входной сигнал нормальный и один инвертированный (с инверторов).


Похожая информация.


Познакомимся с ними поочередно.

Построение логической схемы по заданной логической функции.

Задача:

Дана логическая функция:

Составить логическую схему для неё.

Решение:

Расставим порядок выполнения логических операций, руководствуясь правилами:
  1. отрицание
  2. умножение
  3. сложение
Не забываем про приоритет скобок.
Получаем:

Строим схему по указанному порядку.

Запись логической функции по заданной логической схеме.

Задача:

Дана логическая схема:

Составить логическую функцию по ней.

Решение:

Рассматриваем схему с конца и записываем соответствующие логические операции, учитывая, что в записываемой функции три операнда А, В, С

Можно сначала подписать на схеме промежуточные функции, получаемые на выходе каждого блока, а потом сцепить их логическими операциями.

Определение сигнала на выходе логической схемы по заданным значениям сигналов на всех входах этой схемы.

Задача:

Дана логическая схема и значения сигналов на всех входах:

Определить значение функции F на выходе схемы.

Решение:

Пользуясь таблицами истинности для соответствующих логических элементов схемы, расставляем значения сигналов на выходах и соответственно на входах каждого логического элемента пока не доберёмся до конца схемы. Получаем:

Ответ:

Значение функции F на выходе схемы = 1.

Построение таблицы истинности для заданной логической схемы.

Задача:

Дана логическая схема:

Построить для неё таблицу истинности.

Решение:

Проверяем количество входов на схеме. Количество комбинаций сигналов на 2 входах равно 4, для 3 входов равно 8, для 4 входов равно 16 и т. д. Составляем таблицу истинности, в которой первые столбцы - это входы схемы, обозначенные буквами, следущие столбцы - функции, полученные на выходах каждого элемента схемы, а строки - отражают разные комбинации сигналов на входах. Количество строк совпадает с количеством комбинаций сигналов. Пользуясь таблицами истинности для соответствующих логических элементов схемы, расставляем значения сигналов на выходах каждого логического элемента, т. е. по каждому столбцу пока не доберёмся до конца схемы. Получаем:

Ответ:

4) Ответ: l v 0 & l = 1.

Пример 2

Постройте логическую схему, соответствующую логическому выражению

F = X & Y v (Y v X).

Вычислить значения выражения для X = 1, Y = 0.

1) Переменных две: X и Y;

2) Логических операций три: конъюнкция и две дизъюнкции: 14 3 2 X & Y v (Y v X).

3) Схему строим слева направо в соответствии с порядком логических операций:


3) Вычислим значение выражения: F = l & 0 v (0 v 1) = 0

Выполните упражнение

Постройте логическую схему, соответствующую логическому выраже­нию, и найдите значение логического выражения:

A) F = A v B & C, если А = 1, В=1, С=1.

Б) F = (A v B & C), если А=0, В=1, С=1.

B) F = A v B & C, если А=1, В=0, С=1.

Г) F = (А v В) & (С v В),еслиА=0, В=1, С=0.

Д) F = (А & В & С), если А=0, В=0, С=1.

Е) F = (A & B & C) v (B & C vA), если А=1, В=1,С=0.

Ж) F = B &A v B & A, если А=0, В=0.

Законы логики

Если логическое выражение содержит большое число операций, то составлять для него таблицу истинности достаточно сложно, так как приходится перебирать большое количество вариантов. В таких случаях формулы удобно привести к нормальной форме.

Формула имеет нормальную форму, если в ней отсутствуют знаки эк­вивалентности, импликации, двойного отрицания, при этом знаки от­рицания находятся только при логических переменных.

Для приведения формулы к нормальной форме используют законы логики и правила логических преобразований.

А= А Закон тождества
А&А=0 Закон противоре­чия
Av A = l Закон исключающего третьего
А = А Закон двойного отри­цания
A&0 = 0 A v 0 = A Законы исключения констант
А&1=А A v 1 = 1 Законы исключения констант
А&А=А A v A=A Правило идемпотен­тности
AvA = l
(А→В)=А&В
A→B = A v B
А& (Av В)= А Закон поглощения
A v (А & В) = A Закон поглощения
А& (Av В) = А & В
AvA&B = A v B
(AvB) vC =Av(BvC) (A&B)&C = A&(B&C) Правило ассоциатив­ности
(A&B) v(A&C) = A&(BvC) (AvB)&(AvC) = Av(B&C) Правило дистрибутив­ности
AvB = BvA A&B = B&A Правило коммутатив­ности
AóB = A&Bv(A&B)
(AvB)= A & B Законы Моргана
(A&B)=Av B Законы Моргана

Пример

Упростите логическое выражение F = ((A v В) → (В v С)) . Это логическое выражение необходимо привести к нормальной форме, т.к. в нем присутствует импликация и отрицание логической операции.

1. Избавимся от импликации и отрицания. Воспользуемся (8). Получится: ((AvB)→(BvC))= (AvB)&(BvC).

2. Применим закон двойного отрицания (4). Получим: (AvB)&(BvC)= (AvB)&(BvC)

3. Применим правило дистрибутивности (15). Получим:

(AvB)&(BvC)= (AvB)&Bv(AvB)&C.

4. Применим закон коммутативности (17) и дистрибутивности (15). Получим: (AvB)&Bv(AvB)&C = A&BvB&BvA&CvB&C.

5. Применим (16) и получим: A&BvB&BvA&CvB&C=A&BvBvA&CvВ&С

6. Применим (15), т.е вынесем за скобки В. Получим:

A&BvBv A&Cv B&C=B&(Av1)v A&Cv В&С

7. Применим (6). Получим: В &(Avl)v A&Cv В &С= Bv A&Cv В &С.

8. Переставим местами слагаемые, сгруппируем и вынесем В за скобки. Получим:
BvA&CvB&C = B&(1vC)vA&C.

9. Применим (6) и получим ответ:

Ответ: F = ((A v В) → (В v С)) = В v A & С.

Упростите выражение:

1) F = (A & B) v(B v C).

2) F = (A→B) v (B→A).

3) F = A & C vA & C.

4) F = A vB vC v A v B v C.

5) F = (X & Y v(X & Y)).

6) F= X &(Y v X).

7) F = (X v Z) & (X vZ) & (Y v Z).

10) F= B&C& (AvA).

11) F= A&B&CvAvB

12) F= (AvB)&(BvA)& (CvB)

Упростите выражение:

1. F = A & C vA & C.

2. F= A ↔ B v A&C

3. F=A& (B↔C)

4. F = (X v Y) & (Y ↔ X).

5. F= A vB vC v A v B v C.

6. F=(AvB) → (AvC)

7. F= А ↔ (В v C)

8. F = A & B → C & D.

9. F= (X & Y v(X & Y)).

10. F = (X v Y) & (Y v X).

11. F= A ↔ B &C

12. F = (A v B) & (B v A→ B).

13. F= X &(Y v X).

14. F= A → B v A&C

15. F = X & Y v X.

16. F = ((X v Y) & (Z → X)) & (Z v Y).

17. F= (X v Z) & (X vZ) & (Y v Z).

18. F= А →(В v C)

19. F= A ↔ B v C

20. F = ((X v Y) & (Z v X)) & (Z → Y).

21. F= (B & (A→C))

22. F= A → B v A&C

23. F= А ↔ (В v C)

24. F = ((X v Y) & (Z v X)) & (Z v Y).

25. F= (A→B) v (B→A).

26. F = A & B & C & D.

27. F= А ↔(В v C)

28. F=A& (B→C).

29. F= A&(AvB)

30. F= А ↔ (В v C)

31. F= A → B v A &C

32. F = (A v B) & (B v A v B).

33. F= B&C& (AvA).

34. F= A & B v A&C

35. F = X & Y ↔ X.

36. F = ((X v Y) & (Z → X)) & (Z ↔ Y).

37. F= A&B&CvAvB

38. F = (X → Y) & (Y v X).

39. F= A → B &C

40. F = (A ↔ B) & (B v A &B).

41. F = (AvB)&(BvA)& (CvB).

42. F= A & B v A&C

43. F=A& (BvC)

44. F = (X → Y) & (Y ↔ X).

45. F= Av(A&B)

46. F = A & B ↔ C & D.

47. F= А ↔(В v C)

48. F=(X & Y) v (Y & X).

Назначение сервиса . Онлайн-калькулятор предназначен для построения таблицы истинности для логического выражения .
Таблица истинности – таблица содержащая все возможные комбинации входных переменных и соответствующее им значения на выходе.
Таблица истинности содержит 2 n строк, где n – число входных переменных, и n+m – столбцы, где m – выходные переменные.

Инструкция . При вводе с клавиатуры используйте следующие обозначения: Например, логическое выражение abc+ab~c+a~bc необходимо ввести так: a*b*c+a*b=c+a=b*c
Для ввода данных в виде логической схемы используйте этот сервис .

Правила ввода логической функции

  1. Вместо символа v (дизъюнкция, ИЛИ) используйте знак + .
  2. Перед логической функцией не надо указывать обозначение функции. Например, вместо F(x,y)=(x|y)=(x^y) необходимо ввести просто (x|y)=(x^y) .
  3. Максимальное количество переменных равно 10 .

Проектирование и анализ логических схем ЭВМ ведётся с помощью специального раздела математики - алгебры логики. В алгебре логики можно выделить три основные логические функции: "НЕ" (отрицание), "И" (конъюнкция), "ИЛИ" (дизъюнкция).
Для создания любого логического устройства необходимо определить зависимость каждой из выходных переменных от действующих входных переменных такая зависимость называется переключательной функцией или функцией алгебры логики.
Функция алгебры логики называется полностью определённой если заданы все 2 n её значения, где n – число выходных переменных.
Если определены не все значения, функция называется частично определённой.
Устройство называется логическим, если его состояние описывается с помощью функции алгебры логики.
Для представления функции алгебры логики используется следующие способы:

  • словесное описание – это форма, которая используется на начальном этапе проектирования имеет условное представление.
  • описание функции алгебры логики в виде таблицы истинности.
  • описание функции алгебры логики в виде алгебраического выражения: используется две алгебраические формы ФАЛ:
    а) ДНФ – дизъюнктивная нормальная форма – это логическая сумма элементарных логических произведений. ДНФ получается из таблицы истинности по следующему алгоритму или правилу:
    1) в таблице выбираются те строки переменных для которых функция на выходе =1 .
    2) для каждой строки переменных записывается логическое произведение; причём переменные =0 записываются с инверсией.
    3) полученное произведение логически суммируется.
    Fднф= X 1 *Х 2 *Х 3 ∨ Х 1 x 2 Х 3 ∨ Х 1 Х 2 x 3 ∨ Х 1 Х 2 Х 3
    ДНФ называется совершенной, если все переменные имеют одинаковый ранг или порядок, т.е. в каждое произведение обязательно должны включаться все переменные в прямом или инверсном виде.
    б) КНФ – конъюнктивная нормальна форма – это логическое произведение элементарных логических сумм.
    КНФ может быть получена из таблицы истинности по следующему алгоритму:
    1) выбираем наборы переменных для которых функция на выходе =0
    2) для каждого набора переменных записываем элементарную логическую сумму, причём переменные =1 записываются с инверсией.
    3) логически перемножаются полученные суммы.
    Fскнф=(X 1 V X 2 V X 3) ∧ (X 1 V X 2 V X 3) ∧ (X 1 V X 2 V X 3) ∧ (X 1 V X 2 V X 3)
    КНФ называется совершенной , если все переменные имеют одинаковый ранг.
По алгебраической форме можно построить схему логического устройства , используя логические элементы.

Рисунок1- Схема логического устройства

Все операции алгебры логики определяются таблицами истинности значений. Таблица истинности определяет результат выполнения операции для всех возможны х логических значений исходных высказываний. Количество вариантов, отражающих результат применения операций, будет зависеть от количества высказываний в логическом выражении. Если число высказываний в логическом выражении N, то таблица истинности будет содержать 2 N строк, так как существует 2 N различных комбинаций возможных значений аргументов.

Операция НЕ - логическое отрицание (инверсия)

Логическая операция НЕ применяется к одному аргументу, в качестве которого может быть и простое, и сложное логическое выражение. Результатом операции НЕ является следующее:
  • если исходное выражение истинно, то результат его отрицания будет ложным;
  • если исходное выражение ложно, то результат его отрицания будет истинным.
Для операции отрицания НЕ приняты следующие условные обозначения:
не А, Ā, not A, ¬А, !A
Результат операции отрицания НЕ определяется следующей таблицей истинности:
A не А
0 1
1 0

Результат операции отрицания истинен, когда исходное высказывание ложно, и наоборот.

Операция ИЛИ - логическое сложение (дизъюнкция, объединение)

Логическая операция ИЛИ выполняет функцию объединения двух высказываний, в качестве которых может быть и простое, и сложное логическое выражение. Высказывания, являющиеся исходными для логической операции, называют аргументами. Результатом операции ИЛИ является выражение, которое будет истинным тогда и только тогда, когда истинно будет хотя бы одно из исходных выражений.
Применяемые обозначения: А или В, А V В, A or B, A||B.
Результат операции ИЛИ определяется следующей таблицей истинности:
Результат операции ИЛИ истинен, когда истинно А, либо истинно В, либо истинно и А и В одновременно, и ложен тогда, когда аргументы А и В - ложны.

Операция И - логическое умножение (конъюнкция)

Логическая операция И выполняет функцию пересечения двух высказываний (аргументов), в качестве которых может быть и простое, и сложное логическое выражение. Результатом операции И является выражение, которое будет истинным тогда и только тогда, когда истинны оба исходных выражения.
Применяемые обозначения: А и В, А Λ В, A & B, A and B.
Результат операции И определяется следующей таблицей истинности:
A B А и B
0 0 0
0 1 0
1 0 0
1 1 1

Результат операции И истинен тогда и только тогда, когда истинны одновременно высказывания А и В, и ложен во всех остальных случаях.

Операция «ЕСЛИ-ТО» - логическое следование (импликация)

Эта операция связывает два простых логических выражения, из которых первое является условием, а второе - следствием из этого условия.
Применяемые обозначения:
если А, то В; А влечет В; if A then В; А→ В.
Таблица истинности:
A B А → B
0 0 1
0 1 1
1 0 0
1 1 1

Результат операции следования (импликации) ложен только тогда, когда предпосылка А истинна, а заключение В (следствие) ложно.

Операция «А тогда и только тогда, когда В» (эквивалентность, равнозначность)

Применяемое обозначение: А ↔ В, А ~ В.
Таблица истинности:
A B А↔B
0 0 1
0 1 0
1 0 0
1 1 1

Операция «Сложение по модулю 2» (XOR, исключающее или, строгая дизъюнкция)

Применяемое обозначение: А XOR В, А ⊕ В.
Таблица истинности:
A B А⊕B
0 0 0
0 1 1
1 0 1
1 1 0

Результат операции эквивалентность истинен только тогда, когда А и В одновременно истинны или одновременно ложны.

Приоритет логических операций

  • Действия в скобках
  • Инверсия
  • Конъюнкция (&)
  • Дизъюнкция (V), Исключающее ИЛИ (XOR), сумма по модулю 2
  • Импликация (→)
  • Эквивалентность (↔)

Совершенная дизъюнктивная нормальная форма

Совершенная дизъюнктивная нормальная форма формулы (СДНФ) это равносильная ей формула, представляющая собой дизъюнкцию элементарных конъюнкций, обладающая свойствами:
  1. Каждое логическое слагаемое формулы содержит все переменные, входящие в функцию F(x 1 ,x 2 ,...x n).
  2. Все логические слагаемые формулы различны.
  3. Ни одно логическое слагаемое не содержит переменную и её отрицание.
  4. Ни одно логическое слагаемое формулы не содержит одну и ту же переменную дважды.
СДНФ можно получить или с помощью таблиц истинности или с помощью равносильных преобразований.
Для каждой функции СДНФ и СКНФ определены единственным образом с точностью до перестановки.

Совершенная конъюнктивная нормальная форма

Совершенная конъюнктивная нормальная форма формулы (СКНФ) это равносильная ей формула, представляющая собой конъюнкцию элементарных дизъюнкций, удовлетворяющая свойствам:
  1. Все элементарные дизъюнкции содержат все переменные, входящие в функцию F(x 1 ,x 2 ,...x n).
  2. Все элементарные дизъюнкции различны.
  3. Каждая элементарная дизъюнкция содержит переменную один раз.
  4. Ни одна элементарная дизъюнкция не содержит переменную и её отрицание.

При построении отдельных узлов компьютера довольно часто необходимо решить проблему построения функциональных логических схем по заданным функциям. Для этого достаточно условиться, что истинное высказывание соответствует тому, что цепь проводит ток, а ложное – цепь разорвана.

Логические операции конъюнкции, дизъюнкции, инверсии реализуются в ЭВМ с помощью следующих элементарных схем.

Конъюнкция – логический элемент «и»:

Этот элемент выполняет операцию логического умножения (конъюнкция): f = x 1 Ù x 2 Ùx 3 Ù…Ùx n ; и имеет n входов и один выход.

Дизъюнкция – логический элемент «или»:

Этот элемент выполняет операцию логического сложения (дизъюнкция): f = x 1 Ú x 2 Úx 3 Ú…Úx n ; и имеет n входов и один выход.

Инверсия – логический элемент «не»:

Этот элемент выполняет операцию логического отрицания (инверсии): f = ; и имеет один вход и один выход.

Сложные функциональные схемы можно конструировать из основных логических элементов, используя основные законы булевой алгебры

Пример выполнения контрольного задания

Задание:

Дана функция,

1. Составить функциональную логическую схему по данной функции.

2. Упростить логическую функцию (используя законы булевой алгебры) и выполнить проверку преобразования таблицей истинности.

3. Составить функциональную логическую схему по упрощенной функции.

Выполнение:

1. Составим таблицу истинности для заданной функции:

x y

2. Составим функциональную логическую схему по заданной функции:

3. Упростим заданную функцию, используя законы булевой алгебры:

а) по закону де Моргана – 9

б) по закону идемпотентности - 13

в) закон отрицание отрицания – 1

г) закон дистрибутивности – 6

д) свойства 1 и 0 – 19

е) свойства 1 и 0 – 16

Таким образом, упрощенная функция имеет вид:

4. Составим таблицу истинности для упрощенной функции:

x y

Таким образом, сравнивая таблицы истинности для исходной и упрощенной функций (их последние столбцы) делаем вывод о правильности проведенных преобразований.

5. Составим функциональную логическую схему по упрощенной функции:

Задание для выполнения контрольной работы

Дана функция f(x,y), номер функции в таблице соответствует порядковому номеру студента по списку.

4. Составить функциональную логическую схему по данной функции.

5. Упростить логическую функцию (используя законы булевой алгебры) и выполнить проверку преобразования таблицей истинности.