Средства коллективной защиты. Назначение и общие устройство средств коллективной защиты, их классификация. Общие правила использования и требования безопасности при работе со средствами коллективной защиты. Катодная защита от коррозии – все особенности ме

Одновременно с проведением летных испытаний сверхмалого истребителя СК-1 и доводкой СК-2, ОКБ ЦАГИ, которым руководил Матус Рувимович Бисноват, вело работы и по проекту двухмоторного тяжелого истребителя СК-З, оснащенного двигателями АМ- 37.

Этот самолет должен был применяться для сопровождения бомбардировщиков, и транспортных самолетов, выполняющих ответственные задания на большой высоте, а также для уничтожения высотных целей.

После доработки фюзеляжа под бомбовый отсек (что было предусмотрено проектом, и в этом было главное отличие от немецкого опытного истребителя Фокке-Вульф 187) СК-З мог применяться как высотный скорострой бомбардировщик, способный нести бомбы массой до 1000 кг.

Работы по проекту шли довольно быстро и первую машину планировали передать на заводские испытания уже осенью 1940 года.

Как и многие аналогичные проекты отечественных конструкторов,СК-З был расчитан на установку новейших высотных моторов АМ-37 взлетной мощностью по 1400-1450 лс и номинальной мощностью на высоте 5000 м – 1250 лс.

Проект сразу же разрабатывался в двух вариантах: одноместном (основном) и двухместном. Двухместный вариант предусматривал замену закабинного бензобака на рабочее место радиста, который сидел спиной к пилоту.

Для увеличения дальности полета под центропланом крыла самолета предусматривалась подвеска двух дополнительных топливных баков емкостью по 200 л. На этих же узлах подвески можно было установить и бомбодержатели для 250-кг авиабомб. Еще одна бомба могла быть подвешена под фюзеляжем.

Наступательное стрелковое вооружение самолета должно было состоять из четырех крупнокалиберных пулеметов Березина, два из которых размещались в носовой части фюзеляжа, а два – под кабиной пилота. В перспективе пулеметы могли быть заменены на 20-мм пушки ШВАК.

Конструкция самолета должна была быть цельнометаллической. Вес пустого самолета не должен был превышать 5200 кг, а взлетный – 7000 кг.

В январе 1940 года началась постройка полноразмерного макета самолета СК-З и весной того же года эскизный проект истребителя был рассмотрен комиссией НКАП под председательством Я.В.Смушкевича, в которую также входили А.С. Яковлев, С.Н.Шишкин и М.Н.Шульженко.

В связи с тем, что в это время Яковлев продвигал в серию собственный самолет аналогичного назначения (И-29, ББ-22), истребителю СК-З по-видимо- му просто не хватило места в длинном строю "двухмоторников". Во всяком случае проект был возвращен на доработку.

В феврале 1941 года переделанный заново проект, теперь уже только в двухместном варианте, после повторного рассмотрения был окончательно "зарезан". К тому же на подходе были похожие самолеты куда более авторитетных конструкторов – ДИС Микояна и Гуревича и ТИС Поликарпова.

Вскоре М.Р.Бисноват был направлен в Ленинград на завод №23, где ему пришлось заниматься серийным выпуском истребителя ЛаГГ-3. Во второй половине 1943 г. Бисновата перевели в НИИ-3, где он проектирует и строит самолеты по тематике "302". После войны он возвращается в ЦАГИ, где построил несколько экземпляров самолета с ЖРД Би-5 (Б-5) со стреловидным крылом. Начиная с 1956 года, главный конструктор М.Р.Бисноват возглавил новую тематику по ракетам класса воздух-воз- дух и воздух-земля, работая на ТМЗ.


Основные летно-технические характеристики СК-З*

Самолет СК-З СК-И

Год выпуска 1940 1940

Экипаж, чел. 1 2

Силовая установка 2хАМ-37 2хАМ-37

Мощность взлетная, л.с. 1400 1450**

номинальная на Н=5000 м, л.с. 1250 1250

Скорость максимальная у земли, км/ч 555 535

максимальная на высоте, км/ч 700 680

Время набора высоты 5000 м, мин. 18,5 19,2

Потолок практический, м 11000 11000

Дальность полета, км 1500 900

Площадь крыла, м2 23,79 24,54

Взлетный вес, кг 6995 7180

Вес пустого самолета, кг 5102 5200

Запас топлива, кг 1600 1100***

* данные расчетные

** форсированая по наддуву

*** без подвесных баков

Одним из часто применяемых методов электрохимической защиты разнообразных конструкций из металлов от ржавления является катодная защита. В большинстве случаев ее используют совместно с нанесением на металлические поверхности специальных покрытий.

1 Общая информация о катодной защите

Впервые такая защита металлов была описана в 1820-х годах Гемфри Дэви. На основании его докладов в 1824 году на корабле HMS Samarang осуществили проверку предоставленной теории. На медную обшивку корабля установили железные анодные протекторы, которые существенно уменьшили скорость ржавления меди. Методику стали развивать, и в наши дни катодная всевозможных конструкций из металлов (трубопроводов, элементов автомобиля и т. д.) признается наиболее эффективной и широко используемой.

В производственных условиях такая защита металлов (ее нередко называют катодной поляризацией) производится по двум основным методикам.

  1. Предохраняемая от разрушения конструкция подключается к внешнему источнику тока. В данном случае металлоизделие выполняет функцию катода. А анодами являются инертные дополнительные электроды. Эта методика обычно применяется для защиты трубопроводов, металлических сварных оснований, платформ для бурения.
  2. Катодная поляризация гальванического типа. При такой схеме металлическая конструкция контактирует с металлом, который имеет больший электроотрицательный потенциал (алюминий, магний, алюминиевые сплавы, цинк). При этом под анодом понимают оба металла (основной и защитный). Растворение (имеется в виду сугубо электрохимический процесс) электроотрицательного материала приводит к протеканию через предохраняемое изделие необходимого катодного тока. С течением времени происходит полное разрушение металла-"защитника". Гальваническая поляризация эффективна для конструкций, на которых есть изоляционный слой, а также для металлоизделий относительно малых размеров.

Первая методика нашла широкое применение по всему миру. Она достаточно проста и экономически целесообразна, дает возможность предохранять металл от общей коррозии и от многих ее разновидностей – межкристаллитной коррозии "нержавейки", питтинговой, растрескивания латунных изделий, обусловленного напряжениями, при которых они работают.

Гальваническая схема нашла большее применение в США. В нашей стране она используется реже, хотя ее эффективность высока. Ограниченное применение протекторной защиты металлов в России связано с тем, что на многие трубопроводы у нас не наносят специальное покрытие, а это является обязательным условием для реализации антикоррозионной гальванической методики.

2 Как работает стандартная катодная поляризация металлов?

Катодная защита от коррозии производится посредством использования наложенного тока. Он поступает на конструкцию от выпрямителя либо иного источника (внешнего) тока, где промышленный по частоте переменный ток модифицируется в требуемый постоянный. Объект, который защищается, подключают к выпрямленному току (к "минусовому" полюсу). Конструкция, таким образом, является катодом. Анодное заземление (второй электрод) подключают к "плюсу".

Важно, чтобы между вторичным электродом и конструкцией имелся хороший электролитический и электронный контакт. Первый обеспечивается грунтом, куда погружают анод и объект защиты. Грунт в данном случае выполняет роль электролитической среды. А электронного контакта добиваются с помощью проводников из металлических материалов.

Регулирование катодной антикоррозионной защиты осуществляется посредством поддержания защитного потенциала между электролитической средой и индикатором потенциала поляризации (либо непосредственно конструкцией) на строго определенной величине. Замеряют показатель вольтметром с высокоомной шкалой.

Здесь необходимо понимать, что у потенциала есть не только поляризационный компонент, но и еще одна составляющая – падение (омическое) напряжения. Такое падение возникает из-за протекания через эффективное сопротивление катодного тока. Причем качество катодной защиты зависит исключительно от поляризации на поверхности изделия, которое предохраняется от ржавления. По этой причине выделяют две характеристики защищенности металлоконструкции – наибольший и наименьший потенциалы поляризации.

Эффективное регулирование поляризации металлов, учитывая все сказанное, становится возможным в том случае, когда показатель омического компонента исключается из величины полученной разности потенциалов. Добиться этого можно при помощи особой схемы замера потенциала поляризации. Описывать ее в рамках данной статьи мы не будем, так как она изобилует множеством специализированных терминов и понятий.

Как правило, катодная технология применяется совместно с нанесением на внешнюю поверхность предохраняемых от коррозии изделий специальных защитных материалов.

Для защиты неизолированных трубопроводов и других конструкций необходимо использовать существенные токи, что экономически невыгодно и технически сложно.

3 Катодная защита элементов автомобиля

Коррозия – активный и весьма агрессивный процесс. Качественная защита узлов автомобиля от ржавления вызывает немало проблем у автолюбителей. Коррозионному разрушению подвергаются все без исключения транспортные средства, ведь ржавление начинается даже тогда, когда на лакокрасочном покрытии машины появляется маленькая царапина.

Катодная технология предохранения автомобиля от коррозии достаточно распространена в наши дни. Ее применяют наряду с использованием и всевозможных мастик. Под такой методикой понимают подачу электрического потенциала на поверхность той или иной детали автомобиля, что приводит к эффективному и длительному замедлению ржавления.

При описываемой защите транспортного средства катодом являются специальные пластинки, которые накладывают на наиболее уязвимые его узлы. А роль анода играет корпус автомобиля. Подобное распределение потенциалов обеспечивает целостность корпуса машины, так как разрушению подвергаются только катодные пластины, а основной металл не корродирует.

Под уязвимыми местами транспортного средства, которые можно защитить по катодной методике, понимают:

  • заднюю и переднюю части днища;
  • арку заднего колеса;
  • области фиксации подфарников и непосредственно фар;
  • стыки крыла с колесом;
  • внутренние зоны дверей и порогов;
  • пространство за щитками колес (передних).

Для защиты автомобиля необходимо приобрести специальный электронный модуль (некоторые умельцы изготавливают его самостоятельно) и протекторы-пластины. Модуль монтируют в салоне машины, подсоединяют к бортовой сети (он должен быть запитанным при отключении автодвигателя). Установка устройства занимает буквально 10–15 минут. Причем энергии оно берет минимум, а антикоррозионную защиту гарантирует весьма качественную.

Защитные пластины могут иметь разный размер. Их число также отличается в зависимости от того, в каких местах автомобиля они монтируются, а также от того, какие геометрические параметры имеет электрод. На практике пластин нужно тем меньше, чем больший размер имеет электрод.

Защита от коррозии автомобиля по катодной методике производится и иными сравнительно простыми способами. Самый элементарный – подсоединить проводом "плюс" аккумулятора автомобиля к обычному металлическому гаражу. Обратите внимание – для подключения необходимо обязательно использовать резистор.

4 Защита трубопроводов методом катодной поляризации

Разгерметизация различных по назначению трубопроводов происходит во многих случаях из-за их коррозионного разрушения, вызываемого появлением разрывов, трещин и каверн. Особенно подвержены ржавлению подземные коммуникации. На них образуются зоны с разным потенциалом (электродным), что обуславливается гетерогенностью грунта и неоднородным составом металлов, из которых изготавливаются трубы. За счет появления указанных зон начинается процесс активного формирования коррозионных гальванических компонентов.

Катодная поляризация трубопроводов, выполняемая по схемам, описанным в начале статьи (гальваника или внешний источник энергии), базируется на уменьшении скорости растворения материала труб в процессе их эксплуатации. Достигается подобное уменьшение посредством смещения коррозионного потенциала в зону, имеющую по отношению к естественному потенциалу более отрицательные показатели.

Еще в первой трети 20 столетия был определен потенциал катодной поляризации металлов. Его показатель равняется –0,85 вольт. В большинстве грунтов естественный потенциал металлических конструкций находится в диапазоне от –0,55 до –0,6 вольт.

Это означает, что для эффективной защиты трубопроводов требуется "передвинуть" коррозионный потенциал в отрицательную сторону на 0,25-0,3 вольт. При такой его величине практическое влияние ржавления на состояние коммуникаций почти полностью нивелируется (коррозия за год имеет скорость не более 10 микрометров).

Методика с применением источника тока (внешнего) считается трудоемкой и достаточно сложной. Зато она обеспечивает высокий уровень защиты трубопроводов, ее энергетический ресурс ничем не ограничивается, при этом сопротивление (удельное) грунта оказывает минимальное влияние на качество защитных мероприятий.

Источниками питания для катодной поляризации обычно являются воздушные электролинии на 0,4; 6 и 10 кВ. На местностях, где таковых нет, допускается использование газо-, термо и дизель-генераторов в качестве источников энергии.

Ток-"защитник" распределяется неравномерно по протяженности трубопроводов. Наибольшая его величина отмечается в так называемой точке дренажа – в месте, где производится подключение источника. Чем больше расстояние от этой точки, тем меньше защищены трубы. При этом и чрезмерный ток непосредственно в зоне подключения оказывает негативное влияние на трубопровод – высока вероятность водородного растрескивания металлов.

Метод с использованием гальванических анодов демонстрирует неплохую эффективность в грунтах с малым показателем омности (до 50 ом*м). В грунтах высокоомной группы его не применяют, так как особых результатов он не дает. Здесь стоит добавить, что аноды изготавливают из сплавов на основе, алюминия, магния и цинка.

5 Коротко о станциях катодной защиты (СКЗ)

Для антикоррозионной защиты трубопроводов, проложенных под землей, вдоль трассы их залегания устанавливают СКЗ, включающие в себя:

  • анодное заземление;
  • источник тока;
  • пункт контроля и измерения;
  • кабели и провода, выполняющие соединительные функции.

Станции подключают к сетям электрического тока либо к автономным устройствам. Разрешается устанавливать на СКЗ несколько заземлений и источников энергии тогда, когда в одном подземном коридоре проложено две и более ниток трубопровода. Это, правда, влечет за собой увеличение расходов на проведение антикоррозионных мероприятий.

Если монтируется всего одна установка на многониточные коммуникации, ее соединение с трубами осуществляется посредством особых блоков. Они не позволяют формироваться сильным гальваническим парам, возникающим при монтаже глухих перемычек на трубные изделия. Указанные блоки изолируют трубы друг от друга, а также дают возможность выбирать на каждом элементе трубопроводов требуемый потенциал, гарантирующий максимальную защиту конструкции от ржавления.

Выходное напряжение на катодных станциях может регулироваться автоматически (установка в этом случае оснащается тиристорами) или вручную (оператор переключает при необходимости трансформаторные обмотки). В ситуациях, когда СКЗ функционируют в изменяющихся во времени условиях, рекомендуется эксплуатировать станции с автоматической регулировкой напряжения.

Они сами следят за показателями сопротивления (удельного) грунта, появлением блуждающих токов и прочих факторов, оказывающих негативное воздействие на качество защиты, и автоматически корректируют работу СКЗ. А вот в системах, где защитный ток и показатель сопротивления в его цепи остаются неизменными, лучше использовать установки с ручной настройкой напряжения на выходе.

Добавим, что регулирование в автоматическом режиме производится по одному из двух показателей:

  • по току защиты (гальваностатические преобразователи);
  • по потенциалу объекта, который защищается (потенциостатические преобразователи).

6 Информация об известных станциях катодной защиты

Среди популярных отечественных СКЗ можно выделить несколько установок. Очень востребованной является станция Минерва–3000 мощная система, разработанная французскими и российскими инженерами для объектов Газпрома. Достаточно одной Минервы, чтобы надежно защитить от ржавления до 30 километров трубопроводов. Станция обладает такими основными достоинствами:

  • уникальная технологичность выпуска всех ее комплектующих;
  • повышенная мощность СКЗ (можно предохранять коммуникации с очень плохим защитным покрытием);
  • самовосстановление (после аварийных перегрузок) режимов работы станции на протяжении 15 секунд;
  • наличие высокоточного цифрового оборудования для контроля рабочих режимов и системы терморегулирования;
  • наличие защитных схем от перенапряжения измерительных и входных цепей;
  • отсутствие подвижных узлов и герметичность электрошкафа.

Кроме того, к Минерва–3000 можно подключать установки для удаленного контроля над работой станции и дистанционного управления ее оборудованием.

Отличными техническими показателями обладают и системы АСКГ-ТМ – современные телемеханизированные адаптивные станции для защиты электрокабелей, городских и магистральных трубопроводов, а также емкостей, в которых хранят газ и нефтепродукты. Такие устройства выпускаются с разными показателями (от 1 до 5 киловатт) выходной мощности. Они располагают многофункциональным телеметрическим комплексом, позволяющим выбирать конкретный рабочий режим СКЗ, мониторить и изменять параметры станции, а также обрабатывать поступающую информацию и отправлять ее оператору.

Преимущества использования АСКГ-ТМ :

  • возможность встраивания в SCADA-комплексы за счет поддержки ОРС-технологии;
  • резервный и главный канал связи;
  • выбор значения мощности (выходной);
  • повышенная отказоустойчивость;
  • большой интервал рабочих температур;
  • уникальная точность настройки выходных параметров;
  • предохранение от напряжения силовых выходов системы.

Имеются СКЗ и других типов, сведения о которых несложно найти на специализированных сайтах в интернете.

7 Какие объекты можно защищать при помощи катодной поляризации?

Кроме защиты автомобилей и трубопроводов рассматриваемые методики поляризации активно используются для предохранения от коррозии арматуры, входящей в железобетонные конструкции (здания, дорожные объекты, фундаменты и так далее). Обычно арматура представляет собой единую электросистему, которая при попадании в нее хлоридов и воды активно корродирует.

Катодная поляризация в сочетании с операцией санации бетона останавливает коррозионные процессы. В данном случае необходимо применять два типа анодов:

  • основные – из титана, графита или их комбинации с покрытием металлооксидного вида, а также кремнистого чугуна;
  • распределительные – стержни из сплавов титана с добавочным слоем металлической защиты либо с неметаллическим электропроводящим покрытием.

Регулируя внешний ток, поступающий на железобетонную конструкцию, осуществляют выбор потенциала арматуры.

Поляризация считается незаменимой методикой для защиты стационарных строений, размещаемых на континентальном шельфе, в газовой и нефтяной промысловых сферах. Первоначальные защитные покрытия на таких объектах невозможно восстановить (требуется их демонтаж и транспортировка в сухие ангары), а значит, остается один выход – катодная защита металлов.

Для предохранения от морской коррозии применяется гальваническая поляризация гражданских кораблей посредством анодов из цинка, магния, алюминиевых сплавов. На берегу (во время ремонтов и стоянок) судна подключают к СКЗ, аноды для которых делают из платинированного титана.

Также катодная защита используется для предохранения от разрушения внутренних частей сосудов и емкостей, а также труб, которые контактируют со сточными промышленными водами и иными агрессивными электролитами. Поляризация в данном случае увеличивает время безремонтного применения указанных конструкций в 2–3 раза.

СКЗ предназначены для защиты людей от поражающих факторов ЧС мирного и военного времени. По степени подвижности делятся на:

Стационарные (защитные сооружения);

Подвижные (транспортная и инженерная техника). Защитные сооружения (ЗС) по степени защиты

подразделяют на:

Убежища;

Противорадиационные укрытия (ПРУ);

Простейшие укрытия (ПУ).

ЗС по месту расположения могут быть встроенные (в подвальные и цокольные помещения) или отдельно стоящие (заглубленные в грунт) на расстоянии более высоты ближайших сооружений.

Наибольшими защитными свойствами обладают герметичные убежища, которые обеспечивают безопасность людей во всех ЧС (кроме наводнения).

Устройство типового убежища:

Помещения для размещения людей, оборудованные местами для сидения и лежания (по ним определяется вместимость убежища);

Тамбуры и защитно-герметичные двери;

Санитарно-бытовые помещения (душевые, туалеты, умывальники и т.п.);

Дизельный отсек (с резервной электростанцией);

Фильтровентиляционная установка (ФВУ) с воздухозаборным устройством, размещаемом над поверхностью земляной обсыпи убежища;

- кладовые материальных средств, куда завозятся продукты питания, запас питьевой воды, средства защиты, приборы радиационного (химического) контроля и другие необходимые средства;

Медицинский пункт.

ФВУ предназначена для:

    очистки воздуха от различных загрязнений (газов и аэрозолей);

    вентиляции помещений;

    создания подпора атмосферного воздуха.

Герметичность убежища достигается подпором атмосферного воздуха, т.е. созданием внутри избыточного давления воздуха, превышающего атмосферное на несколько миллиметров водяного столба.

Тамбуры и защитно-герметичные двери обеспечивают сохранение герметичности убежища и исключают проникновение вредных примесей внутрь убежища при входе (выходе) людей.

Атмосферный воздух нагнетается в убежище в количестве 8...13м 3 в час на одного укрываемого человека.

Режимы работы и подготовка убежищ

В зависимости от конкретной ЧС и обстановки в районе в убежище применяют следующие режимы работы:

- «чистой вентиляции» - по сигналу «Воздушная тревога». Воздух очищается на фильтре грубой очистки и нагнетается в убежище. Фильтр грубой очистки содержит металлическую стружку, смоченную минеральными маслами, и задерживает крупные частицы;

- «фильтровентиляции» - по сигналам «Химическая тревога» и «Радиационная опасность». Воздух дополнительно фильтруется прокачиванием через фильтры-поглотители ФВУ;

- «полной изоляции» («регенерации») - на объектах, попадающих в зону высоких концентраций АХОВ или сильных пожаров (атмосферный воздух имеет заниженное содержание кислорода). На таких объектах в убежищах дополнительно установлены регенеративные установки, которые поглощают выдыхаемые углекислый газ и водяной пар и обогащают воздух химически связанным кислородом.

Все убежища имеют двойное назначение: убежище и подземная автостоянка; убежище и спортзал и т.п.

При необходимости убежища приводятся в готовность к приему людей: оборудуются местами для лежания (2-х ярусные солдатские кровати) и сидения, завозятся медикаменты, СИЗ, пополняются комплекты приборов и инструментов согласно табелю оснащения. Из помещений удаляется все имущество, препятствующее размещению людей. Проверяются системы обеспечения воздухом, водой, электроэнергией, связью; герметичность убежища.

Организация обслуживания убежищ возлагается на службу укрытий предприятия, которая выделяет на каждое убежище звено (группу) обслуживания во главе с командиром, который является комендантом убежища.

А . Г . Семенов , генеральный директор , СП «Элкон» , г . Кишинэу ; Л . П . Сыса , ведущий инженер по ЭХЗ , НПК «Вектор» , г . Москва

Введение

Станции катодной защиты (СКЗ) являются необходимым элементом системы электрохимической (или катодной) защиты (ЭХЗ) подземных трубопроводов от коррозии. При выборе СКЗ исходят чаще всего из наименьшей стоимости, удобства обслуживания и квалификации своего обслуживающего персонала. Качество приобретаемого оборудования оценить обычно трудно. Авторы предлагают рассмотреть указанные в паспортах технические параметры СКЗ, которые определяют, насколько качественно будет выполняться основная задача катодной защиты.

Авторы не преследовали цель выражаться строго научным языком в определении понятий. В процессе общения с персоналом служб ЭХЗ мы поняли, что необходимо этим людям помочь систематизировать термины и, что еще более важно, дать им представление, что же происходит и в электросети, и в самой СКЗ.

Задача ЭХЗ

Катодная защита осуществляется при протекании электрического тока от СКЗ по замкнутой электрической цепи, образованной тремя включенными последовательно сопротивлениями:

· сопротивление грунта между трубопроводом и анодом; I сопротивление растекания анода;

· сопротивление изоляции трубопровода.

Сопротивление грунта между трубой и анодом может меняться в широких пределах в зависимости от состава и внешних условий.

Анод является важной частью системы ЭХЗ, и служит тем расходным элементом, растворение которого обеспечивает саму возможность реализации ЭХЗ. Сопротивление его в процессе эксплуатации стабильно растет вследствие растворения, уменьшения эффективной площади рабочей поверхности и образования окислов.

Рассмотрим сам металлический трубопровод, который и является защищаемым элементом ЭХЗ. Металлическая труба снаружи покрыта изоляцией, в которой в процессе эксплуатации образуются трещины от воздействия механических вибраций, сезонных и суточных температурных перепадов и т.д. Через образовавшиеся трещины в гидро- и теплоизоляции трубопровода проникает влага и возникает контакт металла трубы с грунтом, так образуется гальваническая пара, способствующая выносу металла из трубы. Чем больше трещин и их размеры, тем больше металла выносится. Таким образом происходит гальваническая коррозия, в которой течет ток ионов металла, т.е. электрический ток.

Раз течет ток, то возникла замечательная идея взять внешний источник тока и включить его на встречу этому самому току, из-за которого происходит вынос металла и коррозия. Но возникает вопрос: какой величины этот самый рукотворный ток давать? Вроде бы такой, чтобы плюс на минус давал ноль тока выноса металла. А как измерить этот самый ток? Анализ показал, что напряжение между металлической трубой и грунтом, т.е. по обе стороны изоляции, должно находиться в пределах от -0,5 до -3,5 В (это напряжение называется защитным потенциалом).

Задача СКЗ

Задачей СКЗ является не только обеспечивать в цепи ЭХЗ ток, но и поддерживать его таким, чтобы защитный потенциал не выходил за принятые рамки.

Так, если изоляция новая, и она не успела получить повреждений, то ее сопротивление электрическому току высокое и нужен небольшой ток для поддержания нужного потенциала. При старении изоляции ее сопротивление падает. Следовательно, требуемый компенсирующий ток от СКЗ возрастает. Еще больше он возрастет, если в изоляции появились трещины. Станция должна уметь измерять защитный потенциал и менять свой выходной ток соответствующим образом. И ничего более, с точки зрения задачи ЭХЗ, не требуется.

Режимы работы СКЗ

Режимов работы ЭХЗ может быть четыре:

· без стабилизации выходных значений тока или напряжения;

· I стабилизации выходного напряжения;

· стабилизации выходного тока;

· I стабилизации защитного потенциала.

Скажем сразу, что в принятом диапазоне изменений всех влияющих факторов полностью обеспечивается выполнение задачи ЭХЗ только при использовании четвертого режима. Что и принято как стандарт для режима работы СКЗ.

Датчик потенциала выдает станции информацию об уровне потенциала. Станция изменяет свой ток в нужную сторону. Проблемы начинаются с момента, когда надо ставить это самый датчик потенциала. Ставить его нужно в определенном расчетном месте, нужно копать траншею для соединительного кабеля между станцией и датчиком. Тот, кто прокладывал какие-либо коммуникации в городе, знает, какая это морока. Плюс к этому датчик требует периодического обслуживания.

В условиях, когда возникают проблемы с режимом работы с обратной связью по потенциалу, поступают следующим образом. При использовании третьего режима принимают, что состояние изоляции в краткосрочном плане меняется мало и ее сопротивление остается практически стабильным. Следовательно, достаточно обеспечить протекание стабильного тока через стабильное сопротивление изоляции, и получаем стабильный защитный потенциал. В среднесрочном и долговременном плане необходимые корректировки может производить специально обученный обходчик. Первый и второй режимы не предъявляют к СКЗ высоких требований. Эти станции получаются простыми по исполнению и как следствие дешевыми, как в изготовлении, так и в эксплуатации. Видимо это обстоятельство и обуславливает применение таких СКЗ в ЭХЗ объектов, находящихся в условиях невысокой коррозионной активности среды. В случае если внешние условия (состояние изоляции, температура, влажность, блуждающие токи) изменяются до пределов, когда на защищаемом объекте образуется недопустимый режим - эти станции не могут выполнять свою задачу. Для корректировки их режима необходимо частое присутствие обслуживающего персонала, иначе задача ЭХЗ выполняется частично.

Характеристики СКЗ

В первую очередь, СКЗ необходимо выбирать исходя из требований, изложенных в нормативных документах. И, наверное, самым главным в этом случае будет ГОСТ Р 51164-98. В приложении «И» этого документа говорится, что КПД станции должен быть не ниже 70%. Уровень индустриальных помех, создаваемых СКЗ, должен быть не выше значений, указанных ГОСТ 16842, а уровень гармоник на выходе соответствовать ГОСТ 9.602.

В паспорте СКЗ обычно указываются: I номинальная выходная мощность;

КПД при номинальной выходной мощности.

Номинальная выходная мощность - мощность, которую может отдавать станция, при номинальной нагрузке. Обычно эта нагрузка составляет 1 Ом. КПД определяется как отношение номинальной выходной мощности к активной мощности, потребляемой станцией в номинальной режиме. И в этом режиме КПД самый высокий для любой станции. Однако большинство СКЗ работают далеко не в номинальном режиме. Коэффициент загрузки по мощности колеблется от 0,3 до 1,0. В этом случае реальный КПД для большинства выпускаемых сегодня станций будет заметно падать при снижении выходной мощности. Особенно это заметно для трансформаторных СКЗ с применением тиристоров в качестве регулирующего элемента. Для бестрансформаторных (высокочастотных) СКЗ падение КПД при уменьшении выходной мощности существенно меньше.

Общий вид изменения КПД для СКЗ разного исполнения можно видеть на рисунке.

Из рис. видно, что если вы используете станцию, к примеру, с номинальным КПД равным 70%, то будьте готовы к тому, что еще 30% полученной из сети электроэнергии вы истратили бесполезно. И это в самом лучшем случае номинальной выходной мощности.

При выходной мощности на уровне 0,7 от номинальной вы должны быть готовы уже к тому, что ваши потери электроэнергии сравняются с полезно затраченной энергией. Где же теряется столько энергии:

· омические (тепловые) потери в обмотках трансформаторов, дросселей и в активных элементах схемы;

· затраты энергии для работы схемы управления станцией;

· потери энергии в виде радиоизлучения; потери энергии пульсаций выходного тока станции на нагрузке.

Эта энергия излучается в грунт от анода и не производит полезной работы. Поэтому так необходимо использовать станции с низким коэффициентом пульсаций, иначе бесполезно тратится недешевая энергия. Мало, того, что при больших уровнях пульсаций и радиоизлучения растут потери электроэнергии, но кроме этого эта бесполезно рассеянная энергия создает помехи для нормальной работы большого количества электронной аппаратуры, расположенной в окрестностях. В паспорте СКЗ указывается также необходимая полная мощность, попробуем разобраться с этим параметром. СКЗ забирает из электросети энергию и делает это в каждую единицу времени с такой интенсивностью, какой мы позволили ей это делать ручкой регулировки на панели управления станции. Естественно, что из сети можно брать энергию с мощностью, не превышающей мощность этой самой сети. И если напряжение в сети меняется синусоидально, то и наша возможность брать энергию из сети меняется синусоидально 50 раз в секунду. К примеру, в момент времени, когда напряжение сети переходит через ноль, из нее нельзя взять никакой мощности. Однако же, когда синусоида напряжения достигает своего максимума, то в этот момент наша возможность забирать из сети энергию максимальна. В любой другой момент времени эта возможность меньше. Таким образом, получается, что в любой момент времени мощность сети отличается от ее мощности в соседний момент времени. Эти значения мощности называются мгновенной мощностью в данный момент времени и таким понятием трудно оперировать. Поэтому договорились о понятии так называемой действующей мощности, которая определяется из воображаемого процесса, в котором сеть с синусоидальным изменением напряжения заменяется на сеть с постоянным напряжением. Когда подсчитали величину этого постоянного напряжения для наших электросетей, то получилось 220 В - ее назвали действующим напряжением. А максимальное значение синусоиды напряжения назвали амплитудным напряжением, и равно оно 320 В. По аналогии с напряжением ввели понятие действующего значения тока. Произведение действующего значения напряжения на действующее значение тока называют полной потребляемой мощностью, и ее значение указывают в паспорте СКЗ.


А используется полная мощность в самой СКЗ не полностью, т.к. в ней имеются различные реактивные элементы, которые не тратят энергию, а используют ее как бы для создания условий, чтобы остальная энергия прошла в нагрузку, а затем возвращают эту настроечную энергию обратно в сеть. Эту возвращаемую обратно энергию назвали реактивной энергией. Энергию, которая передается в нагрузку, - активной энергией. Параметр, который указывает отношение между активной энергией, которая должна быть передана в нагрузку, и полной энергией, подводимой к СКЗ, называется коэффициентом мощности и указывается в паспорте станции. И если мы согласуем свои возможности с возможностями питающей сети, т.е. синхронно с синусоидальным изменением напряжения сети отбираем из нее мощность, то такой случай называется идеальным и коэффициент мощности СКЗ, работающей с сетью таким способом, будет равен единице.

Активную энергию станция должна как можно эффективнее передать для создания защитного потенциала. Эффективность, с которой СКЗ это делает, и оценивается коэффициентом полезного действия. Сколько она тратит энергии, зависит от способа передачи энергии и от режима работы. Не вдаваясь в это обширное поле для обсуждения, скажем только, что трансформаторные и трансформаторнотиристорные СКЗ достигли своего предела совершенствования. У них нет ресурсов для улучшения качества своей работы. Будущее за высокочастотными СКЗ, которые с каждым годом становятся надежней и проще в обслуживании. По экономичности и качеству своей работы они уже превосходят своих предшественников и имеют большой резерв для совершенствования.

Потребительские свойства

К потребительским свойствам такого устройства как СКЗ можно отнести следующее:

1. Размеры , вес и прочность . Наверно, не нужно говорить, что чем меньше и легче станция, тем меньше затрат на ее транспортировку и установку как при монтаже, так и при ремонте.

2. Ремонтопригодность . Очень важна возможность быстрой замены станции или узла на месте. С последующим ремонтом в лаборатории, т.е. модульный принцип построения СКЗ.

3. Удобство в обслуживании . Удобство в обслуживании, кроме удобства транспортировки и ремонта, определяется, по нашему мнению, следующим:

наличие всех необходимых индикаторов и измерительных приборов, наличие возможности дистанционного управления и слежения за режимом работы СКЗ.

Выводы

Исходя из вышесказанного можно сделать несколько выводов-рекомендаций:

1. Трансформаторные и тиристорно-трансформаторные станции безнадежно устарели по всем параметрам и не отвечают современным требованиям, особенно в области энергосбережения.

2. Современная станция должна иметь:

· высокий КПД во всем диапазоне нагрузок;

· коэффициент мощности (cos I) не ниже 0,75 во всем диапазоне нагрузок;

· коэффициент пульсаций выходного напряжения не более 2%;

· диапазон регулирования по току и напряжению от 0 до 100%;

· легкий, прочный и малогабаритный корпус;

· модульный принцип построения, т.е. иметь высокую ремонтопригодность;

· I энергоэкономичность.

Остальные требования к станциям катодной защиты, такие как защита от перегрузок и коротких замыканий; автоматическое поддержание заданного тока нагрузки - и прочие требования, являются общепринятыми и обязательными для всех СКЗ.

В заключении предлагаем потребителям таблицу сравнения параметров основных выпускаемых и применяемых сейчас станций катодной защиты. Для удобства в таблице представлены станции одинаковой мощности, хотя многие производители могут предложить целую гамму выпускаемых станций.