Технологии жк мониторов. Перспективные технологии дисплеев Основные технологии при изготовлении жк дисплеев

При подготовке тестирования ЖК-мониторов с диагональю 19 дюймов мы столкнулись с необычайно высоким интересом к данной теме. Проблема выбора, которая никогда не была легкой, в данном случае усугубляется большим разнообразием моделей, цена которых лежит в широких пределах – от $300 до $800 при сравнимых (на первый взгляд) характеристиках. Для того чтобы понять, чем же они отличаются между собой и какой продукт предпочесть, нам предстоит рассмотреть устройство современного ЖК-дисплея.

Мы не будем подробно останавливаться на базовых принципах функционирования ЖК-матриц, полагая, что большинство наших читателей уже знакомо с ними в достаточной степени. лишь, что в них используется явление поворота жидкими кристаллами плоскости поляризации светового потока. Но технологии и подходы, применяемые различными производителями к решению возникающих при создании мониторов проблем, подчас значительно отличаются.

В наследство от эпохи ЭЛТ-мониторов нам остался аналоговый интерфейс RGB VGA D-sub. Видеоадаптер преобразует данные кадрового буфера из цифрового вида в аналоговый, а электроника ЖК-монитора, со своей стороны, вынуждена выполнять обратное, аналого-цифровое преобразование. Несложно понять, что такие избыточные операции как минимум не улучшают качества изображения, к тому же они требуют дополнительных затрат для своей реализации. Поэтому с повсеместным распространением ЖК-дисплеев интерфейс VGA D-sub не имеет будущего и в скором времени его вытеснит цифровой DVI.

Не стоит думать, что в дешевых мониторах производители намеренно не реализуют поддержку DVI-интерфейса, ограничиваясь лишь VGA D-sub. Просто для этого требуется применение специального TMDS-приемника со стороны монитора, и себестоимость устройства с поддержкой как аналогового, так и цифрового интерфейсов по сравнению с вариантом с единственным аналоговым входом будет выше.

Электроника

Если разобрать корпус современного ЖК-монитора и взглянуть на плату управляющей электроники, поначалу может возникнуть легкое недоумение. В самом деле, даже плата блока питания, расположенная рядом, выглядит гораздо внушительнее!

Функциональную схему блока обработки изображения в ЖК-дисплее простой не назовешь, и лаконичность его платы объясняется иначе: благодаря подходу System-on-a-Chip большинство функций (от аналого-цифрового преобразования RGB-сигнала, его масштабирования, обработки и вплоть до формирования выходных сигналов LVDS) выполняется единственной ИС с высокой степенью интеграции, носящей название Display Engine. Среди производителей мониторов сегодня весьма популярны ИС от ST Microelectronics (семейства ADE3xxx), работающие под управлением 8-битовых микроконтроллеров.

Блок ЖК-матрицы также выглядит довольно простым, и его плата обычно содержит единственную схему управления, так называемый драйвер матрицы, в который интегрированы приемник LVDS и драйверы истоков и затворов, преобразующие видеосигнал в адресацию конкретных пикселов по столбцам и строкам. В целом же доля электронных компонентов в себестоимости монитора, по оценкам экспертов IDC, составляет всего 11% – нетрудно догадаться, что большинство затрат приходится на саму панель TFT LCD.

В блок ЖК-матрицы входит также система ее подсветки, которая, за редкими исключениями, выполнена на газоразрядных лампах с холодным катодом (Cold Cathode Fluorescent Lamp, CCFL). Высокое напряжение для них обеспечивает инвертор, размещенный в блоке питания монитора. Лампы обычно располагаются сверху и снизу, их излучение направлено в торец полупрозрачной панели, находящейся сзади за матрицей и выполняющей роль световода. От качества матирования и однородности материала этой панели зависит такая важная характеристика, как равномерность подсветки матрицы.

Современные технологии TFT LCD

Для ЖК-мониторов основным элементом, определяющим качество изображения, является матрица TFT LCD. На сегодняшний день на рынке представлены три конкурирующие между собой базовые технологии ЖК-панелей и некоторое количество их разновидностей. Это Twisted Nematics (TN, раньше добавляли еще и +Film, однако сейчас других просто нет), In-Plane Shutter (IPS, S-IPS) и Vertical Alignment (VA, MVA, PVA). Не затрагивая технических особенностей данных технологий, которые широко обсуждаются на соответствующих технических сайтах в Интернете, остановимся лишь на их практических и рыночных аспектах.

a
б
в

ИС высокой интеграции (Display engine) семейства ADE3xxx от ST Microelectronics (a) под управлением восьмиразрядного микроконтроллера (б) и формирователи выходного сигнала (в) – вот и все устройства на плате управления ЖК-дисплеем

TN. Самый старый и дешевый в производстве тип матриц, для него же характерно минимальное время отклика, что и обусловило его широкое распространение. Большинство 17-дюймовых дисплеев и до 50% 19-дюймовых содержат именно матрицы TN. На этом, пожалуй, достоинства заканчиваются, и начинается длинный список недостатков.

Специфическая, «жесткая» цветопередача, весьма далекая от эталонной (а с появлением «сверхбыстрых» панелей она еще ухудшилась); клиппинг в светлых областях изображения; малые углы обзора, особенно вертикальный; невысокая контрастность. К тому же «битые» пикселы (dead pixels) на таких матрицах пропускают свет, поэтому на экране они будут видны в виде яркой синей, красной или зеленой точки.

Но все же, если вам нужен монитор с минимальным смазыванием движущегося изображения, пока именно TN остается наилучшим выбором. Однако не стоит забывать, что при этом он совершенно не подойдет для работы с графикой.

Узнать такие матрицы довольно легко по потемнению картинки при взгляде снизу и выцветанию, вплоть до инвертирования светлых областей при взгляде сверху.

IPS/S-IPS. Характеристики матриц, выполненных по данной технологии (разработанной компанией Hitachi), являют собой прямую противоположность таковым для TN. IPS имеет впечатляющий список достоинств. Это и отличная цветопередача, и широчайшие углы обзора, и хороший контраст (глубокий черный цвет). Но преуспеванию IPS на рынке мешают ее недостатки: сложность в производстве (как следствие, дороговизна) и большое время реакции матрицы.

IPS может быть идеальным выбором для задач, связанных с обработкой статического изображения. А вот комфортно играть в компьютерные игры, увы, не получится. Кроме того, на рынке до сих пор нет IPS-матриц с технологией overdrive (подробнее о ней ниже), поэтому мониторы с такими матрицами выбирают преимущественно профессионалы в области графики.

Узнать матрицы IPS также легко: если взглянуть под углом на включенный монитор с черной заливкой на экране, то черный цвет будет иметь фиолетовый оттенок.

MVA/PVA. Технология MVA (Multi-domain Vertical Alignment) разработана компанией Fujitsu в качестве компромиссной между IPS и TN. Достоинства таких матриц: отличные углы обзора, неплохая цветопередача, высокая контрастность; однако время отклика по-прежнему не может сравниться с соответствующим показателем у TN.

Samsung производит матрицы PVA (Pattern Vertical Alignment) и S-PVA, которые, грубо говоря, являются усовершенствованными вариантами MVA. Корейской компании удалось значительно улучшить контрастность, вплоть до рекордной 1000:1, а также с помощью технологии overdrive серьезно уменьшить время отклика – теперь на топовых моделях 19-дюймовых мониторов этого производителя вполне можно комфортно играть в динамичные компьютерные игры.

Если обобщить весь опыт тестирования ЖК-мониторов в нашей Тестовой лаборатории, то именно PVA-матрицы на сегодняшний день видятся нам как оптимальный компромисс между малым временем отклика TN и качественной цветопередачей IPS. Поэтому дисплеи, оборудованные такими матрицами, могут в наибольшей степени претендовать на звание универсальных.

Чем определяется качество

После рассмотрения достоинств и недостатков применяемых в ЖК-дисплеях технологий изготовления матриц у вас может возникнуть совершенно закономерный вопрос: если качество изображения на 80% зависит от матрицы, почему же цены на схожие мониторы разных брендов подчас отличаются в несколько раз?

Даже если оставить за рамками качество сборки и материал корпуса, а также конструкцию подставки и возможности настройки параметров изображения, останется такой животрепещущий вопрос, как политика производителя по отношению к «битым» пикселам. Последние представляют собой ячейки, управляющие тонкопленочные транзисторы которых вышли из строя. Обычно это вызвано производственным дефектом, так как сделать идеальную панель большой диагонали с тремя миллионами ячеек совсем не просто, в ходе же эксплуатации монитора новые дефекты появляются редко.

Стандарт ISO 13406-2 определяет четыре класса ЖК-панелей, для каждого из которых допускается наличие определенного количества неработающих ячеек на миллион пикселов. Для массового распространения на данный момент сертифицированы лишь матрицы первого («битые» субпикселы отсутствуют) и второго классов (количество вышедших из строя субпикселов не больше пяти). Однако ввиду непрекращающегося падения цен держать такую планку качества производителям все труднее: слишком много панелей уходит в брак, а работать в убыток в условиях демпинга долго не получится. Поэтому если тенденция к удешевлению ЖК-дисплеев сохранится и в будущем, то совсем не исключено появление на рынке и панелей третьего класса (от 6 до 50 вышедших из строя субпикселов).

Кто-то может спросить: а как же те производители, которые гарантируют, что «битых» пикселов в их мониторах нет? Они что, научились делать ЖК-панели практически без брака? Нет, здесь все гораздо проще. Гарантия на полное отсутствие вышедших из строя субпикселов обычно дается лишь на отдельные модели мониторов (вершины продуктовых линеек) и свидетельствует о применении панелей первого класса. Второй же класс просто устанавливают в более дешевые модели линейки. Кроме того, такую гарантию на свои дисплеи могут безбоязненно давать прежде всего те бренды, которые делают ЖК-панели и для себя, так как при этом они имеют возможность отобрать для собственных устройств самые качественные из них: Samsung, LG и Philips.

Таким образом, на пресловутый вопрос «навіщо платити більше?» применительно к ЖК-мониторам имеется совершенно четкий ответ. Как говорил М. Жванецкий, можно этого и не делать, если вас не интересует результат – в нашем случае качество приобретаемого устройства.

Не все спецификации одинаково полезны

Если взглянуть на страницу спецификаций ЖК-дисплея любого производителя, то список его технических характеристик обычно выглядит весьма внушительно. Для потенциальных покупателей зачастую именно спецификации являются единственным источником информации о продукте, и поэтому в народе довольно популярно сравнение характеристик устройств различных брендов. Тем не менее такой подход к ЖК-мониторам, к сожалению, совершенно неприменим – делать выводы о качестве, сравнивая спецификации, корректно лишь для продуктов одной компании (да и то не всегда).

Такая ситуация с, казалось бы, вполне объективными показателями, изначально призванными вносить ясность, требует дополнительного рассмотрения. Для начала отметим, что, хотя стандарт VESA на измерения параметров плоскопанельных дисплеев определяет их методику однозначно, далеко не все производители ее придерживаются. Более того, когда дело доходит до наиболее критичных с маркетинговой точки зрения пунктов спецификации, с методами и условиями их измерений зачастую начинается самый настоящий бардак.

Попробуем разобраться, какие же из характеристик ЖК-дисплея наиболее важны и стоят того, чтобы при выборе обратить на них внимание.

а
б
в
г

Блок подсветки (а) состоит из газоразрядных ламп с холодным катодом CCFL (б), полимерного световода (в), рассеивателей и поляризатора (г)

Размер диагонали и разрешение . Если первый параметр очевиден и особых комментариев не требует, то на втором стоит остановиться подробнее. ЭЛТ-дисплеи могут одинаково хорошо работать в широком диапазоне разрешений, так как размер ячейки их теневой маски или апертурной решетки намного меньше пиксела изображения. Однако картинка на ЖК-панели выглядит оптимально в том случае, если видеоадаптер работает в «родном» для ЖК-монитора разрешении (native resolution). Ячейки ЖК-панели по сравнению с ячейками теневой маски довольно велики, и на один пиксел изображения приходится лишь одна RGB-ячейка матрицы. Поэтому для 15-дюймовых дисплеев основным рабочим является разрешение 1024×768, для 17- и 19-дюмовых – 1280×1024. Все прочие режимы будут лишь компромиссами: при установке на видеоадаптере ПК меньшего разрешения изображение масштабируется до нужного размера электроникой дисплея и в результате «замыливается». Если же разрешение видеорежима превышает оптимальное, то большинство мониторов отказывается с ним работать либо опять-таки картинка ухудшается из-за пересчета.

Обратите внимание, что несмотря на два дюйма разницы в размере диагонали, 17- и 19-дюймовые мониторы (в большинстве своем) характеризуются одним и тем же «родным» разрешением. То есть количество информации, которое можно разместить на них, одинаково, выигрыш лишь в большем размере точки для 19-дюймового дисплея. На практике чаще всего оказывается, что значительно приятнее работать именно с последним – за счет увеличенного размера ячеек матрицы (и соответственно, уменьшенного расстояния между ними) изображение, формируемое 19-дюймовым устройством, кажется лучше.

Частота обновления экрана . В эпоху ЭЛТ-мониторов этот параметр был важнейшим для достижения комфортного, немерцающего изображения на дисплее. Но для того чтобы человеческий глаз воспринимал быстро сменяющиеся кадры как движущуюся картинку, достаточно и 30 кадров в секунду (60 при чересстрочном формировании). Необходимость же поднимать частоту «рефреша» до 85, 100 и даже 120 Гц была вызвана тем, что на ЭЛТ-дисплеях изображение формируется построчным сканированием, причем, пока электронный луч «засветит» строку в нижней части экрана, обладающий небольшим временем светимости люминофор в верхней его части уже успевает отдать значительный процент своей энергии, и картинка темнеет – до следующего прохода луча.

Так как в ЖК-дисплеях кадр формируется целиком, и каждая ячейка матрицы – это транзистор с запоминающим конденсатором (storage capacitor), который долго хранит заряд, то никакое мерцание (чередование светлых и темных кадров) не возникает, и необходимой и достаточной частотой обновления является значение в 60 Гц. Именно на него рассчитана электроника ЖК-матрицы, и потому, даже если на видеоадаптере установлена более высокая частота, DSP дисплея будет пропускать лишние кадры, что может привести к рывкам движущегося на экране изображения.

Яркость и контрастность . Максимальная яркость ЖК-панели зависит от мощности ее подсветки и коэффициента пропускания матрицы и фильтров. Контрастность же определяется отношением интенсивности белого цвета к светимости черного цвета. Производители частенько указывают в паспортных данных мониторов значения, которые заявлены для установленных в них панелей, что, строго говоря, не совсем верно, так как электроника и качество сборки дисплея могут оказать существенное влияние на эти величины.

Паспортное значение максимальной яркости в 250 кд/м2 считается вполне достаточным, причем для работы при искусственном освещении хватает реального уровня в 100–120 кд/м2, а бóльшая яркость может понадобиться лишь при ярком солнечном свете.

С контрастностью не все так просто: в идеале чем больше она заявлена (при равной яркости), тем чище черный цвет на мониторе. На практике же иногда бывает так, что при меньшей заявленной контрастности на одном мониторе черный цвет выглядит заметно чище и глубже, чем на другом, в паспорте которого указано более высокое значение: здесь вступают в силу тип, эффективность антибликового покрытия экрана и прочие факторы.

Количество отображаемых цветов . Этот, на первый взгляд, не слишком информативный пункт спецификации подчас может многое сказать об установленной в монитор ЖК-матрице. Дело здесь вот в чем: разрядность большинства «сверхбыстрых» TN-матриц, в изобилии появившихся на рынке за последние несколько лет, составляет менее 8 бит на канал цветности (24 бит RGB), обычно лишь 6 (18 бит RGB), чего без применения специальных средств совершенно недостаточно для формирования всего спектра режима True Color: 28∙28∙28 дает 16 777 216 цветов, а 26∙26∙26 – только 262 144. Для эмуляции недостающих оттенков в управляющую электронику закладываются алгоритмы дизеринга – либо традиционные пространственные (когда варьируются цвета соседних точек), либо временные, когда отображаемый пикселом цвет переключается через каждый кадр; а иногда и различные их сочетания. В итоге глаз удается обмануть, однако качество изображения на такой матрице все же нельзя сравнивать с таковым для полноценной 24-битовой матрицы.

Поэтому еще совсем недавно при установке в монитор матрицы с уменьшенной разрядностью производители в графе «количество цветов» указывали 16,2 млн оттенков, а для полноценной 24-битовой – 16,7 млн. На сегодняшний же день, к сожалению, некоторые компании даже для 18-битовых панелей пишут 16,7 млн оттенков, и потому определить с помощью спецификаций, какая в мониторе матрица, возможным не представляется.

Углы обзора . Данный параметр очень важен для комфортной работы с монитором. Однако он, увы, утратил свою информативность – с тех пор как в спецификациях даже быстрых ЖК-матриц производители начали указывать значения 140–160°. Нет, это не значит, что углы обзора стали лучше, скорее наоборот, немного изменилась методика их измерений.

Исторически граничным углом обзора, вносимым в спецификации, считался такой, при котором контраст падал до 10:1. Как видите, уже тогда при этом совершенно не учитывались возникающие искажения цветопередачи, которые для TN-матриц подчас выражаются в инвертировании цветов. Для «быстрых» же матриц реальные углы обзора еще ýже, чем для обычных. Поэтому в последнее время некоторые производители ни с того ни с сего начали считать граничными углы обзора матрицы при контрасте не 10:1, а всего 5:1, что дает им основания указывать даже для «быстрых» TN-матриц значения выше 140°.

На практике же разница между углами обзора для разных типов матриц, как говорится, небо и земля. Если для «быстрых» TN заметные искажения наблюдаются даже при небольшом отклонении взгляда от угла нормали (иногда при нормальном угле зрения по центру монитора они уже заметны в его углах), то на современные мониторы, оснащенные PVA- и IPS-матрицами, можно смотреть практически под любым углом. Поэтому углы обзора мониторов на матрицах типа TN и MVA/PVA/IPS несравнимы, хотя цифры спецификаций подчас довольно схожи.

Время отклика. Это один из наиболее спорных и неоднозначных параметров современных ЖК-дисплеев. Гонка миллисекунд, которая длится вот уже несколько лет, привела к тому, что многие пользователи, особенно любители компьютерных игр, выбирают для себя монитор, руководствуясь исключительно данной характеристикой. Однако, как мы неоднократно подчеркивали в тестированиях, на практике заявленное низкое время реакции матрицы еще не гарантирует отсутствия смазывания движущегося изображения – более того, нередки случаи, когда, скажем, монитор с паспортным временем реакции 16 мс на поверку оказывается быстрее 12-миллисекундной модели.

Дело, как обычно, в выбранной методике измерения. Еще недавно временем реакции было принято считать суммарное время переключения пиксела с черного цвета на белый (trise) и обратно (tfall), точнее достижения значений яркости 90% и 10% соответственно. Но эта цифра не давала представления о том, как будет вести себя монитор в реальных условиях, и вот почему. При переходе от минимального уровня к максимальному прикладываемое к электродам матрицы напряжение также максимальное; следовательно, воздействие на жидкие кристаллы довольно сильное, что обеспечивает их быструю переориентацию в нужном направлении. Гораздо сложнее осуществить столь же стремительный поворот на небольшой угол (речь идет все же о кристаллах, хоть и «жидких» – их вязкость высока), что соответствует переходам от одного промежуточного состояния к другому (между оттенками серого). Приложенное напряжение будет уже не столь высоким, и время отклика может превысить заявленное в несколько раз – все зависит от типа и конструкции матрицы. В итоге для одной 16-милисекундной модели на экране хорошо видно смазывание, а для другой оно практически не проявляется, и оценить его можно только на глаз либо путем измерения и последующего усреднения длительности всех переходов между различными состояниями ЖК-ячейки (число которых для 8-битовой RGB-матрицы составит 256).

Разгоняем… монитор!

А нельзя ли как-то подогнать неторопливые кристаллы, чтобы ускорить время их поворота при переходе между промежуточными состояниями? Оказывается, можно. Для этого нужно знать их исходное положение (запомнить предыдущий кадр) и точно рассчитать так называемый разгонный импульс напряжения для нового значения пиксела в следующем кадре. Он значительно превышает номинальное для требуемого состояния напряжение, подаваемое после него, и поэтому быстро повернет кристаллы в нужное положение. Данная технология получила название overdrive, и ее корректное воплощение способно снизить время отклика ЖК-ячейки до минимального почти по всему диапазону ее состояний.

Проблема здесь заключается в соблюдении требуемой точности: даже в обычных панелях значения напряжений для формирования 256 состояний находятся в столь узком диапазоне, что управление ими представляет собой настоящее балансирование на острие ножа. Для нормальной же работы форсированной панели точность нужно повысить на порядок, что пока удается отнюдь не всем.

На данном этапе корректная настройка схемы overdrive для панели все еще технически сложная задача, и под силу далеко не всем производителям. В результате при смене состояния ячейки могут стать заметны артефакты – скажем, если оптимальное значение разгонного импульса будет превышено и кристаллы повернутся на больший, чем нужно, угол, через ячейку на какое-то время пройдет больше света. Визуально для движущегося на сером фоне черного объекта это выразится в светлой кайме вместо привычных смазанных фронтов, хотя, повторим, при корректно реализованной технологии такие артефакты появляться не должны.

Чтобы подчеркнуть преимущества мониторов, оборудованных панелями с технологией overdrive, производители выбрали другую методику измерения времени отклика. Если раньше это была сумма временных затрат на переключение ячейки из черного в белый и обратно, то теперь часто указывают усредненное время переключения из одного оттенка серого в другой (Gray-to-Gray, GTG). Однако легко заметить, что в последнем варианте измерения одним переключением меньше, поэтому в результате даже без применения overdrive получается более красивая цифра. Ну а этим быстро воспользовались маркетинговые отделы тех компаний, которые еще даже не воплотили поддержку overdrive в своих матрицах…

Одним словом, заявленное в спецификации время отклика, к сожалению, имеет мало общего со степенью смазывания движущегося изображения в реальных задачах. Для объективной же оценки данного параметра необходимо проводить большое количество измерений, да еще учитывая при этом, что пользовательские настройки монитора, о которых пойдет речь ниже, могут вносить в них существенные коррективы.

Настройка ЖК-монитора

Из всех параметров ЖК-дисплея, которые пользователь может подстраивать, как важнейшие мы выделим яркость, контраст, гамму и цветовую температуру. Следующее утверждение на первый взгляд может показаться нелепым, однако это горькая правда: при установке для них значений, отличных от заводских (точнее, оптимальных для данной ЖК-матрицы), велика вероятность заметного ухудшения цветопередачи. Единственным исключением здесь будет лишь регулировка яркости ламп подсветки, хотя она встречается не у всех моделей.

Если вспомнить устройство и принцип работы ЖК-монитора, то понять, почему так происходит, будет несложно. Без изменения яркости и спектра излучения ламп подсветки (первое возможно, а вот второе – нет) единственный способ реализации всех подобных настроек – подмешивание к видеосигналу, подаваемому на матрицу, некоторой постоянной составляющей. А это приведет к сужению рабочего диапазона значений ячеек матрицы и, как следствие, к уменьшению количества отображаемых цветов (которое даже для лучших панелей и так относительно невелико).

Убедиться же в этом на практике еще проще: достаточно загрузить популярную программу TFTtest.exe и вывести на экран монохромную градиентную заливку (либо нарисовать ее в любом растровом графическом редакторе), а потом поменять значения упомянутых настроек и понаблюдать за появляющимися искажениями, которые выражаются в виде ступенек и/или цветных разводов на градиенте.

  • Выполнить полный сброс установок.
  • Вывести на экран плавную монохромную градиентную заливку.
  • Отрегулировать яркость, контраст, гамму и цветовую температуру таким образом, чтобы на градиенте не наблюдались полосы, ступеньки и цветовые аномалии.
  • В дальнейшем из всех настроек монитора корректировать лишь яркость подсветки, если есть такая возможность, так как она не влияет на качество цветопередачи.
  • Все остальные параметры настраивать с помощью драйверов видеоадаптера либо аппаратного калибратора.

ЖК-мониторы: светлое будущее?

Рыночные перспективы этих устройств не вызывают сомнений, так как наблюдаемый высокий спрос на них однозначно свидетельствует: пользователи сделали свой выбор и жаждут поскорее сменить на своих столах громоздкие ЭЛТ-устройства на компактные и изящные ЖК-мониторы, забывая при этом о недостатках ЖК-технологии. К сожалению, ценовые и маркетинговые войны, развязываемые производителями, приводят к ухудшению ряда важнейших для качества изображения параметров на фоне улучшения лишь двух – времени реакции и стоимости. Особенно данная тенденция заметна для mainstream-дисплеев – 17- и 19-дюймовых устройств с панелями на базе технологии TN.

Таким образом, прогнозы скорой смерти матриц типа TN оказались, мягко говоря, несколько преувеличенными: раз большинство пользователей вполне устраивает такое качество изображения, то и необходимости его улучшать на сегодняшний день попросту нет. Для требовательных же покупателей, готовых платить за качество, остаются дисплеи на матрицах PVA и IPS больших диагоналей (19 дюймов и более). И до тех пор пока их время отклика и цена не сравняются с таковыми для TN-матриц (что маловероятно), господство последних на рынке не подлежит сомнению.

Рассказывающая об отличиях IPS и TN матриц в рамках советов при покупке монитора или ноутбука. Пришло время поговорить о всех современных технологиях производства дисплеев , с которыми мы можем столкнуться и иметь представление о видах матриц в устройствах нашего поколения. Не путайте с LED, EDGE LED, Direct LED — это типы подсветки экранов и к технологии создания дисплеев имеют косвенное отношение.

Наверное, каждый может вспомнить свой монитор с электронно-лучевой трубкой, которым пользовался ранее. Правда и до сих пор встречаются пользователи и поклонники ЭЛТ технологии. В настоящее время экраны увеличились в диагонали, поменялись технологии изготовления дисплеев, стало все больше разновидностей в характеристиках матриц, обозначающихся аббревиатурами TN, TN-Film, IPS, Amoled и т.д.

Информация в данной статье поможет выбрать себе монитор, смартфон, планшет и другую различного рода технику. Помимо этого, позволит осветить технологии создания дисплеев, а также типы и особенности их матриц.

Пару слов о жидкокристаллических дисплеях

LCD (Liquid Crystal Display — жидкокристаллический дисплей) — это дисплей, изготовленный на основе жидких кристаллов, которые меняют свое расположение при подаче на них напряжения. Если вы близко подойдете к такому дисплею и внимательно присмотритесь к нему, то заметите, что он состоит из маленьких точек – пикселей (жидких кристаллов). В свою очередь каждый пиксель состоит из красного, синего и зеленого субпикселей. При подаче напряжения субпиксели выстраиваются в определенном порядке и пропускают через себя свет, таким образом формируя пиксель определенного цвета. Множество таких пикселей формируют изображение на экране монитора или другого устройства.

Первые мониторы массового производства оснащались матрицами TN — обладающими самой простой конструкцией, но которые нельзя назвать самым качественным типом матрицы. Хотя и среди данного типа матриц имеются весьма качественные экземпляры. Данная технология основана на том, что при отсутствии напряжения субпиксели пропускают через себя свет, формируя на экране белую точку. При подаче напряжения на субпиксели, они выстраиваются в определенном порядке, образуя собой пиксель заданного цвета.

Недостатки TN матрицы

  • По той причине, что стандартный цвет пикселя, при отсутствии напряжения, белый, данный тип матриц обладает не самой лучшей цветопередачей. Цвета отображаются более тускло и блекло, а черный цвет выглядит скорее темно-серым.
  • Еще одним главным недостатком TN матрицы являются малые углы обзора. Частично с данной проблемой попытались справиться улучшением технологии TN до TN+Film, с помощью дополнительного слоя, нанесенного на экран. Углы обзора стали больше, но все равно оставались далеки от идеала.

В настоящий момент TN+Film матрицы полностью заменили TN.

Достоинства TN матрицы

  • малое время отклика
  • относительно недорогая себестоимость.

Делая выводы, можно утверждать, что при необходимости в недорогом мониторе для офисной работы или серфинга в интернете, мониторы с TN+Film матрицами подойдут наилучшим образом.

Главное отличие технологии IPS матриц от TN — перпендикулярное расположение субпикселей при отсутствии напряжения, которые образуют черную точку. То есть, в состоянии спокойствия экран остается черным.

Преимущества IPS матриц

  • лучшая цветопередача относительно экранов с TN матрицами: вы имеете яркие и сочные цвета на экране, а черный цвет остается действительно черным. Соответственно, при подаче напряжения пиксели меняют свой цвет. Учитывая эту особенность, владельцам смартфонов и планшетов с IPS-экранами можно посоветовать использовать темные цветовые схемы и обои на рабочем столе, тогда смартфон от аккумулятора будет работать немного дольше.
  • большие углы обзора. В большинстве экранов они составляют 178°. Для мониторов, а особенно для мобильных устройств (смартфонов и планшетов) эта особенность является важной при выборе пользователем гаджета.

Недостатки IPS матриц

  • большое время отклика экрана. Это влияет на отображение в динамических картинках, таких как игры и фильмы. В современных IPS панелях с временем отклика дела обстоят получше.
  • большая стоимость по сравнению с TN.

Подводя итоги, телефоны и планшеты лучше выбирать с IPS-матрицами, и тогда от использования устройства пользователь будет получать огромное эстетическое удовольствие. Матрица для монитора не является столь критичной, современные .

AMOLED-экраны

Последние модели смартфонов оснащают AMOLED-дисплеями. Данная технология создания матриц основана на активных светодиодах, которые начинают светиться и отображать цвет при подаче на них напряжения.

Давайте рассмотрим особенности Amoled матрицы :

  • Цветопередача . Насыщенность и контрастность таких экранов выше требуемого. Цвета отображаются настолько ярко, что у некоторых пользователей могут уставать глаза при продолжительной работе со своим смартфоном. Зато черный цвет отображается еще более черным, чем даже в IPS-матрицах.
  • Энергопотребление дисплея . Так же как и в IPS, отображение черного цвета требует меньше энергии, чем отображение определенного цвета, и тем более белого. Но разница в энергопотреблении между отображением черного и белого цвета в AMOLED-экранах намного больше. Для отображения белого цвета необходимо в несколько раз больше энергии, чем для отображения черного.
  • «Память картинки» . При продолжительном выводе статического изображения могут оставаться следы на экране, а это в свою очередь сказывается на качестве отображения информации.

Также из-за своей довольно высокой стоимости AMOLED-экраны пока используются только в смартфонах. Мониторы, построенные на такой технологии, стоят неоправданно дорого.

VA (Vertical Alignment) данную технологию, разработанную Fujitsu, можно рассматривать как компромисс между TN и IPS матрицами. В матрицах VA кристаллы в выключенном состоянии расположены перпендикулярно плоскости экрана. Соответственно черный цвет обеспечивается максимально чистый и глубокий, но при повороте матрицы относительно направления взгляда, кристаллы будут видны не одинаково. Для решения проблемы применяется мультидоменная структура. Технология Multi-Domain Vertical Alignment (MVA) предусматривает выступы на обкладках, которые определяют направление поворота кристаллов. Если два поддомена поворачивается в противоположных направлениях, то при взгляде сбоку один из них будет темнее, а другой светлее, таким образом для человеческого глаза отклонения взаимно компенсируются. В матрицах PVA, разработанных Samsung нет выступов, и в выключенном состоянии кристаллы строго вертикальны. Для того, чтобы кристаллы соседних субдоменов поворачивались в противоположных направлениях, нижние электроды сдвинуты относительно верхних.

Для уменьшения времени отклика в матрицах Premium MVA и S-PVA применяется система динамического повышения напряжения для отдельных участков матрицы, которую обычно называют Overdrive. Цветопередача матриц PMVA и SPVA почти так же хороша как и у IPS, время отклика немного уступает TN, углы обзора максимально широкие, черный цвет наилучший, яркость и контраст максимально возможные среди всех существующих технологий. Однако даже при небольшом отклонении направления взгляда от перпендикуляра, даже на 5–10 градусов можно заметить искажения в полутонах. Для большинства это останется незамеченным, но профессиональные фотографы продолжают за это недолюбливать технологии VA.

MVA и PVA матрицы обладают отличной контрастностью и углами обзора, но вот с временем отклика дела обстоят похуже – оно растет при уменьшении разницы между конечным и начальным состояниями пиксела. Ранние модели таких мониторов были почти непригодны для динамичных игр, а сейчас они показывают результаты близкие к TN матрицам. Цветопередача *VA матриц, конечно, уступает IPS-матрицам, но остается на высоком уровне. Тем не менее, благодаря высокой контрастности, эти мониторы будут отличным выбором для работы с текстом и фотографией, с чертежной графикой, а также в качестве домашних мониторов.

В заключении могу сказать, что выбор всегда за вами…

Плазменные дисплеи
(PDP - plasma display panel)

Коммерческий цикл любого изобретения не вечен, и производители, запустившие массовое производство LCD-мониторов, готовят следующее поколение технологий отображения информации. Устройства, которые придут на смену жидкокристаллическим, находятся на разных стадиях развития. Некоторые, такие, как LEP (Light Emitting Polymer - светоизлучающие полимеры), только выходят из научных лабораторий, а другие, например на основе плазменной технологии, уже представляют собой законченные коммерческие продукты.

Глубина монитора

Размер всегда был главным препятствием при создании широкоэкранных мониторов. Мониторы размером больше 24 дюймов, созданные с использованием ЭЛТ технологии, слишком тяжелые и громоздкие. ЖК-мониторы - плоские и легкие, но экраны, размер которых больше 20 дюймов, обладают слишком высокой себестоимостью. Плазменная технология нового поколения идеально подходит для создания больших экранов. Она позволяет выпускать плоские и легкие мониторы глубиной всего 9 см (см. рис. 1). Поэтому, несмотря на большой экран, они могут быть установлены в любом месте - на стене, под потолком, на столе.

Рисунок 1. Глубина монитора.

Благодаря широкому углу обзора изображение видно с любой точки. И что самое главное, плазменные мониторы способны передать цвет и резкость, которые раньше были недостижимы при таком размере экрана.

Идея использования газового разряда в средствах отображения не нова. Подобные устройства выпускались много лет назад в СССР в Рязани в НПО «Плазма». Однако размер элемента изображения был достаточно велик, так что для получения приличного изображения было нужно создавать огромные табло. Изображение было некачественным, передавалось мало цветов, устройства были крайне ненадежными.

За рубежом исследования и разработки в области этой технологии начались еще в начале 60-х годов. Еще лет пятьдесят назад было открыто одно интересное явление. Как оказалось, если катод заострить на манер швейной иглы, то электромагнитное поле в состоянии самостоятельно «выдергивать» из него свободные электроны. Необходимо только подать напряжение. По такому принципу работают лампы дневного света. Вылетающие электроны ионизируют инертный газ, чем заставляют его светиться. Трудность заключалась лишь в отработке технологии получения таких игольчатых матриц. Ее решили в Университете штата Иллинойс в 1966 году. В начале семидесятых годов компания Owens-Illinois довела проект до коммерческого состояния. В восьмидесятых годах эту идею пытались воплотить в реальный коммерческий продукт компании Burroughs и IBM, но тогда еще безуспешно.

Надо сказать, что идея плазменной панели появилась вовсе не из чисто научного интереса. Ни одна из существовавших технологий не могла справиться с двумя простыми задачами: добиться высококачественной цветопередачи без неизбежной потери яркости и создать телевизор с широким экраном, чтобы он при этом не занимал всю площадь комнаты. А плазменные панели (PDP), тогда только теоретически, подобную задачу как раз могли решить. Первое время опытные плазменные экраны были монохромными (оранжевыми) и могли удовлетворить спрос только специфических потребителей, которым требовалась, прежде всего, большая площадь изображения. Поэтому первую партию PDP (около тысячи штук) купила Нью-йоркская фондовая биржа.

Направление плазменных мониторов возродилось после того, как стало окончательно ясно, что ни ЖК-мониторы, ни ЭЛТ не в состоянии недорого обеспечить получение экранов с большими диагоналями (более двадцати одного дюйма). Поэтому лидирующие производители бытовых телевизоров и компьютерных мониторов, такие, как Hitachi, NEC и другие, вновь вернулись к PDP. В область плазменной технологии также обратили свои взоры и корейские компании «второй мировой линии», среди которых, например, Fujitsu, производящая более дешевую электронику, что тут же внесло остроту конкуренции. Сейчас Fujitsu, Hitachi, Matsushita, Mitsubishi, NEC, Pioneer и другие производят плазменные мониторы с диагональю 40 дюймов и более.

Принцип работы плазменной панели состоит в управляемом холодном разряде разреженного газа (ксенона или неона), находящегося в ионизированном состоянии (холодная плазма). Рабочим элементом (пикселем), формирующим отдельную точку изображения, является группа из трех субпикселей, ответственных за три основных цвета соответственно. Каждый субпиксель представляет собой отдельную микрокамеру, на стенках которой находится флюоресцирующее вещество одного из основных цветов (см. рис. 2). Пиксели находятся в точках пересечения прозрачных управляющих хром-медь-хромовых электродов, образующих прямоугольную сетку.

Конструкция ячейки

Рисунок 2. Конструкция ячейки.

Для того, чтобы «зажечь» пиксель, происходит приблизительно следующее. На питающий и управляющий электроды, ортогональные друг другу, в точке пересечения которых находится нужный пиксель, подается высокое управляющее переменное напряжение прямоугольной формы. Газ в ячейке отдает большую часть своих валентных электронов и переходит в состояние плазмы. Ионы и электроны попеременно собираются у электродов, по разные стороны камеры, в зависимости от фазы управляющего напряжения. Для «поджига» на сканирующий электрод подается импульс, одноименные потенциалы складываются, и вектор электростатического поля удваивает свою величину. Происходит разряд - часть заряженных ионов отдает энергию в виде излучения квантов света в ультрафиолетовом диапазоне (в зависимости от газа). В свою очередь, флюоресцирующее покрытие, находясь в зоне разряда, начинает излучать свет в видимом диапазоне, который и воспринимает наблюдатель. 97% ультрафиолетовой составляющей излучения, вредного для глаз, поглощается наружным стеклом. Яркость свечения люминофора определяется величиной управляющего напряжения.

Взаимодействия в PDP-ячейке

Рисунок 3. Взаимодействия в ячейке.

Высокая яркость (до 650 кд/м 2) и контрастность (до 3000:1) наряду с отсутствием дрожания являются большими преимуществами таких мониторов (Для сравнения: у професионального ЭЛТ-монитора яркость равна приблизительно 350 кд/м 2 , а у телевизора - от 200 до 270 кд/м 2 при контрастности от 150:1 до 200:1). Высокая четкость изображения сохраняется на всей рабочей поверхности экрана. Кроме того, угол по отношению к нормали, под которым увидеть нормальное изображение на плазменных мониторах, существенно больше, чем у LCD-мониторов. К тому же плазменные панели не создают магнитных полей (что служит гарантией их безвредности для здоровья), не страдают от вибрации, как ЭЛТ-мониторы, а их небольшое время регенерации позволяет использовать их для отображения видео- и телесигнала. Отсутствие искажений и проблем сведения электронных лучей и их фокусировки присуще всем плоскопанельным дисплеям. Необходимо отметить и стойкость PDP-мониторов к электромагнитным полям, что позволяет использовать их в промышленных условиях - даже мощный магнит, помещенный рядом с таким дисплеем, никак не повлияет на качество изображения. В домашних же условиях на монитор можно поставить любые колонки, не опасаясь возникновения цветных пятен на экране.

Главными недостатками такого типа мониторов является довольно высокая потребляемая мощность, возрастающая при увеличении диагонали монитора и низкая разрешающая способность, обусловленная большим размером элемента изображения. Кроме этого, свойства люминофорных элементов быстро ухудшаются, и экран становится менее ярким. Поэтому срок службы плазменных мониторов ограничен 10000 часами (это около 5 лет при офисном использовании). Из-за этих ограничений, такие мониторы используются пока только для конференций, презентаций, информационных щитов, то есть там, где требуются большие размеры экранов для отображения информации. Однако есть все основания предполагать, что в скором времени существующие технологические ограничения будут преодолены, а при снижении стоимости, такой тип устройств может с успехом применяться в качестве телевизионных экранов или мониторов для компьютеров.

Тип дисплея прямого свечения Принцип работы дисплея Основные достоинства и недостатки Особенности и перспективы развития
Кинескопные (CRT - Catod Ray Tube) Термоэмиссия электронов, ускоряющихся электростатическим полем. Отклонение электронного пучка (развертка растра) магнитным полем катушек ОС. Излучение света люминофоров основных цветов за счет энергии ускоренных электронов. 1. Воспроизводят полный цветовой треугольник (локус) человеческого зрения.2. Прекрасное разрешение и высокая контрастность.3. Большие масса и габариты. 1. Разработка кинескопов повышенного разрешения со сверх плоским экраном.2.Ведутся работы по повышению экономичности новых кинескопов.
Плазменные панели PDP (Plasma Display Panel) Свечение люминофоров основных цветов в результате воздействия УФ-излучения, возникающего при электрическом разряде в плазме. Плазма образуется при электрическом разряде постоянного (DC) или переменного (AC) тока в разряженном газе между двумя стеклянными пластинами дисплея. 1. Большая яркость, полный цветовой треугольник (локус).2. Легкость создания больших плоских панелей с диагональю 40 дюймов и более.3.Широкий угол обзора (более 160 градусов). Сегодняшние достижения плазменных панелей с диагональю 40 дюймов и более:яркость свечения экрана 350 кд/м2, контраст 300:1,разрешение 640х480 пикселей и более, экономичность порядка 10 Вт/люмен.
Плазма - адресуемые панели PALC (Plasma Adressing Liquid Crystal Display Device) Комбинированная конструкция - для управления (коммутации) активной ЖК-матрицы (LCD). В качестве ключа используется проводящий канал в разряженном газе (плазме). 1. Большая яркость, полный цветовой треугольник (локус).2. Легкость создания больших плоских панелей с диагональю 40 дюймов и более.3. Экономичночть.4. Возможность создания панелей высокого разрешения.5. Малый угол обзора (в последних моделях значительно расширен). Достижения панелей PALC: экономичность 1,2 мВт/люмен, серийно изготавливаются панели с диагональю 40-60 дюймов.

Сравнительная характеристика дисплеев прямого свечения.

Неплохие перспективы PDP связывают с относительно низкими требованиями к производственным условиям; в отличие от TFT-матриц PDP-экраны можно изготовлять в условиях низких температур методом прямой печати.

Практически каждый производитель плазменных панелей добавляет к классической технологии некоторые собственные ноу-хау, улучшающие цветопередачу, контрастность и управляемость. В частности, NEC предлагает технологию капсулированного цветового фильтра (CCF), отсекающего ненужные цвета, и методику повышения контрастности за счет отделения пикселей друг от друга черными полосами (такая же технология используется Pioneer). В мониторах Pioneer также используются технология Enhanced Cell Structure, суть которой в увеличении площади люминофорного пятна, и новая химическая формула голубого люминофора, который дает более яркое свечение, и, соответственно, повышает контрастность. Компания Samsung разработала конструкцию монитора повышенной управляемости - панель разделена на 44 участка, каждый из которых имеет собственный электронный блок управления.

Компании Sony, Sharp и Philips совместно разрабатывают технологию PALC (Plasma Addressed Liquid Crystal), которая должна соединить в себе преимущества плазменных и LCD экранов с активной матрицей. Дисплеи, созданные на основе данной технологии, сочетают в себе преимущества жидких кристаллов (яркость и сочность цветов, контрастность) с большим углом видимости и высокой скоростью обновления плазменных панелей. В качестве регулятора яркости в этих дисплеях используются газоразрядные плазменные ячейки, а для цветовой фильтрации применяется ЖК-матрица. Технология PALC позволяет адресовать каждый пиксель дисплея по отдельности, а это означает непревзойденную управляемость и качество изображения. Первые образцы на основе технологии PALC появились в 1998 году.

Можно привести несколько удачных примеров использования плазменных мониторов. В торговом центре в Осло установлено 70 дисплеев, на которых покупают рекламное время небольшие магазинчики. Там PDP-мониторы окупили себя за 2,5 месяца. Используют их и в аэропортах. В частности, в Вашингтоне они установлены в зале прилета. Благодаря своей динамичности такой способ подачи информации привлекает гораздо больше внимания, чем традиционные табло. Есть опыт применения плазменных мониторов и в ресторанах McDonalds. Различные телевизионные компании, например CBS, NBC, BBS, MTV и российская НТВ используют в оформлении своих студий PDP-мониторы. Это связано с тем, что высокая частота обновления позволяет вести съемку PDP-дисплея обычной камерой, и при этом не возникает мерцания или стробоскопического эффекта.

Итак, несмотря на довольно высокую цену, плазменные мониторы уже сейчас находят применение во многих отраслях - вложенные в них деньги быстро окупаются. Рост объемов продаж плазменных дисплеев и постоянное совершенствование конструкции позволяет предположить, что в перспективе цены на них упадут до уровня ЭЛТ-мониторов. По словам представителей Fujitsu, у этой компании есть четкая цель - довести стоимость плазменной панели до $100 за один дюйм диагонали. «Таким образом, 42-дюймовая панель будет стоить $4200, что уже весьма близко к стоимости ЭЛТ-моделей аналогичного размера», - говорят они. Когда точно это случится, предсказать пока трудно, но, по оценкам специалистов, в качестве крайнего срока можно рассматривать 2005 год.

Field Emission Display (FED)
дисплеи с электростатической (автоэлектронной) эмиссией

Технологии, которые применяются при создании мониторов, могут быть разделены на две группы: 1) мониторы, основанные на излучении света - традиционные ЭЛТ-мониторы и плазменные дисплеи, то есть устройства, элементы экрана которых излучают свет во внешний мир; 2) мониторы трансляционного типа - LCD мониторы. Одним из лучших технологических направлений в области создания мониторов, которая совмещает в себе особенности обоих технологий, описанных выше, является технология FED (Field Emission Display). Этот тип мониторов начал осваиваться в США и Европе в ответ на прорыв Японии в области ЖК-мониторов.

Мониторы FED основаны на процессе, который немного похож на тот, что применяется в ЭЛТ-мониторах, так как в обоих методах применяется люминофор, светящийся под воздействием электронного луча. Также их называют плоскими ЭЛТ. Главное отличие между ЭЛТ и FED мониторами состоит в том, что ЭЛТ-мониторы имеют три пушки, которые испускают три электронных луча, последовательно сканирующих экран, покрытый люминофорным слоем, а в FED-мониторе каждый пиксель изображения формируется излучением электронов с нескольких тысяч субмикрометровых остроконечных элементов поверхности. Благодаря этому не требуется высоковольтная эмиссия, и рабочее напряжение устройства может быть существенно снижено. Оно во многом зависит от материала эмитирующей поверхности. Например, если электроны генерируются молибденом, то на управляющие электроды достаточно подать 12 В. Но, несмотря на привлекательность низковольтной конструкции, оказалось, что для эффективного облучения люминофора все же требуется разогнать электроны в высоковольтном поле. Другая проблема FED-дисплеев - поддержание вакуума в экранах большого размера. Конструкция должна быть достаточно прочной, чтобы противостоять сжимающему атмосферному давлению.

FED мониторы обеспечивают высокую яркость изображения (600–800 кд/м 2) и угол обзора 160° во всех направлениях, а также имеют очень короткое время отклика, легки, тонки, потребляют мало электроэнергии, могут работать в широком температурном диапазоне. Но, к сожалению, еще не решена главная проблема FED-дисплеев - невысокий срок работы.

Типичные характеристики уже действующих FED"ов: размер по диагонали 10–27 см, толщина порядка нескольких миллиметров, допустимый интервал рабочей температуры от –5 до +85°С. По прогнозам, к концу 2001 года в мире будет производиться около миллиона 14,1-дюймовых FED-дисплеев (в год).

В Красноярском государственном техническом университете (КГТУ) также разработана технология производства FED-дисплеев. Производство экранов планируется проводить совместно с ОАО «Искра». Бизнес-план по «Организации производства полевых эмиссионных дисплеев» представлен в администрацию Красноярского края, прошел два этапа экспертизы и в настоящее время выставлен на постоянно действующей Российской выставке инвестиционных проектов.

Light Emission Plastics (LEP)

Начало LEP-технологии было положено в 1989 году, когда профессор Ричард Френд вместе с группой химиков научной лаборатории Кембриджского университета открыл светоизлучающие полимеры (Light Emitting Plastics). Вскоре выяснилось, что открытые вещества обладают рядом свойств, которые позволяют разработать на их основе семейство дисплеев нового поколения. Для изучения LEP и создания новых дисплеев была образована компания CDT (Cambridge Display Technologies). Вскоре CDT нашла инвесторов, и в 1992 году началась разработка первого монитора, сделанного на основе LEP-технологии.

Светоизлучающие полимеры - это одна из разновидностей так называемых сопряженных полимеров, электропроводность разных представителей которых лежит в весьма широком диапазоне, и они, будучи расположенными между электродами, излучают свет. Эти полимеры (полифениленвинилен (PPV) и циано-PPV (CN-PPV)) являются полупроводниками, кроме того, еще и самоизолируемыми.

хим. строение PPV и CN-PPV

Рисунок 4. Химическое строение PPV и CN-PPV.

технология LEP

Рисунок 5. Конструкция LEP-дисплея.

первый LEP-монитор

Достаточно логично, что первым коммерческим применением проводящего пластика стали проводники. На данный момент такие пластики по проводимости приближаются к меди и имеют срок службы порядка 10 лет. Они применяются (в частности, компанией Matsushita) для изготовления электродов в батареях, проводящего покрытия электростатических динамиков, антистатических покрытий, и, что особенно важно, для нанесения проводящих дорожек на печатных платах. Однако, как оказалось, наиболее интересной и экономически перспективной областью применения светоизлучающих пластиков стало создание различных устройств воспроизведения визуальной информации, то есть дисплеев.

Рисунок 6. Конструкция LEP-дисплея.

Так тесное сотрудничество компании CDT с японской корпорацией Seiko Epson привело в конечном итоге к созданию первого в мире пластикового монитора (официально об этом было объявлено 16 февраля 1998 года). Представленный дисплей был монохромным (черно-желтым), имел разрешение 800x236 точек и площадь около 50 мм 2 при толщине всего в 2 мм. Каждым пикселем этого дисплея управлял отдельный тонкопленочный транзистор (TFT), а светоизлучающий полимер наносился на коммутирующую матрицу в жидком виде по технологии, аналогичной стандартной струйной печати.

Существует ряд причин, как чисто техничесих, так и коммерческих, которые делают LEP одним из главных кандидатов на роль основополагающей технологии мониторов следующего поколения. В первую очередь, это относительная простота применения тонкопленочных технологий на основе стандартных литографических процессов при низких затратах и высокой надежности производства. Немаловажной деталью является тот факт, что LEP-мониторы работают при напряжении питания всего около 5 В и имеют очень малый вес. Это позволяет использовать их в малогабаритных преносных устройствах (мобильные телефоны, дисплеи ноутбуков, калькуляторы, видеокамеры, цифровые фотоаппараты), которые питаются от аккумуляторов и батарей. Кроме того, устройство монитора достаточно простое - слои полимера наносят прямо на TFT-матрицу и на прозрачную подложку. Незначительное влияние соседних электронов, обусловленное хорошими изоляционными свойствами полимера, позволяет формировать изображение из самых малых элементов. Таким образом, можно получить практически любое разрешение и придать отдельному пикселю, а также экрану в целом произвольную форму. И, наконец, еще одно немаловажное преимущество LEP-мониторов - они очень тонкие. Это позволяет наносить различные поляризационные покрытия, обеспечивающие высокую контрастность изображения. Кроме того, в отличие от ЖК-дисплеев, угол обзора новых устройств может достигать 180° за счет того, что пластик излучает сам и не требует подсветки. Одной из главных проблем LEP-технологии является низкая эффективность излучения света (т.е. отношение его интенсивности к плотности проходящего тока). Изначально это соотношение составляло 0,01%, однако компания CDT смогла поднять этот показатель до 5% при излучении желтого света, что сравнимо с эффективностью современных неорганических светодиодов (LED). Существенным недостатком был и достаточно узкий диапазон цветов, в котором излучали пластики. Его границы удалось расширить, и в настоящее время он простирается от синего до ближнего инфракрасного (при этом его эффективность составляет около 1%). Полимерный экран нуждается в герметизации, чтобы избежать расслоения под действием водяных паров. Еще одна проблема заключалась в крайне низком сроке службы LEP-мониторов из-за обесцвечивания пластика под действием УФ-лучей, однако за счет использования многослойной структуры и других технических ухищрений его продлили до 5 лет (именно такая продолжительность эксплуатации дисплеев является сегодня характерной для ЭЛТ-мониторов). При различных температурных режимах срок службы LEP-мониторов составляе более 7000 часов при 20° С и около 1100 часов при 80° С без ухудшения характеристик для устройств, произведенных и эксплуатирующихся в нормальных атмосферных условиях, а срок хранения устройств при воздействии яркого света и повышенной температуры без потери работоспособности - более 18 месяцев. При этом компания продолжает работы в этом направлении, стремясь довести срок жизни LEP-устройств хотя бы до 20000 часов, что, по мнению инженеров компании, достаточно для большинства применений.

К настоящему моменту CDT уже разработала полноцветный полимерный дисплей. Несмотря на то, что компании еще есть над чем поработать, можно утверждать, что по прошествии некоторого времени LEP-дисплеи составят достойную конкуренцию по качеству и цене как ЖК, так и ЭЛТ-мониторам. В настоящее время с CDT сотрудничают такие компании, как Seiko Epson, Intel, HP и др. В конце февраля 2000 года CDT объявила о завершении строительства предприятия по производству LEP-материалов. Объем инвестиций в этот проект оценивается в $3 млн. Ввод в строй нового предприятия не только позволит увеличить объем выпуска LEP-полимеров для исследовательских нужд самой компании, но и даст возможность осуществлять поставки компаниям-партнерам CDT.

И совсем недавно (летом 2000 года) компания CDT объявила о завершении разработки дисплея, который в буквальном смысле можно будет распечатать на струйном принтере. Но гибкое покрытие напыляют светоизлучающие полимеры, после чего к подложке достаточно подвести токопроводящие подложки, чтобы получить цветное изображение. Cтоимость такого монитора составляет 60% от цены сопоставимого по размерам ЖК-монитора.

Электролюминесцентные мониторы
(electroluminescent displays)

ЭЛ-мониторы похожи на ЖК, но имеют специальные доработки, обеспечивающие светоизлучение при туннельных переходах. Эти мониторы имеют высокие частоты развертки, хорошую надежность и яркость. Они работают в широком спектре температур (от –40 до +85° C). Однако для ЭЛ-мониторов необходимо высокое напряжение (>80 Вт), цвета у них не такие чистые, как у ЖК-моделей, и изображение на ярком свете тускнеет. Среднее время наработки до отказа (MBTF) составляет 100000 часов. Время отклика меньше 1 мс. Угол обзора более 160°.

Конструкция EL-дисплея

Рисунок 7. Конструкция EL-дисплея.

EL-дисплей

Рисунок 8. EL-дисплей.

Рисунок 9. Время отклика.

Угол обзора

Рисунок 10. Угол обзора.

Температурный диапазон

Рисунок 11. Температурный диапазон.

Вакуумные флуоресцентные мониторы
(vacuum fluorescent displays)

Эти мониторы могут работать при более низкой мощности, чем плазменные и электролюминесцентные мониторы. Эта технология использует высокоэффективное фосфорное покрытие, нанесенное непосредственно на каждый прозрачный анод в области экрана. Однако эти модели имеют относительно низкое разрешение, так как размер матрицы ограничивается шириной точек фосфора. Поэтому ее используют в низкоинформационных приложениях. Эта технология широко о себе заявила в такой области, как экраны объявлений, так как на таких мониторах изображение хорошо видно на ярком свету.

Рисунок 12. VFDisplay.

Электронная бумага

Компания E Ink (Кембридж, штат Масачусетс) и Bell Labs, исследовательское подразделение Lucent Techologies, основываясь на результатах исследований процесса электрофореза, выполненных в лаборатории MIT Media Lab, получили вещество, похожее на краску и способное изменять цвет под воздействием электрического поля.

Принцип работы «электронных чернил» пояснен рисунками:

Технология E Ink 1

Электронные чернила - цветная жидкость, состоящая из миллионов крошечных сфер, называемых микрокапсулами. Каждая микрокапсула имеет прозрачную оболочку, наполнитель синего цвета и микроскопические частицы белого пигмента.

Первый рабочий жидкокристаллический дисплей был создан Фергесоном (Fergason) в 1970 году. До этого жидкокристаллические устройства потребляли слишком много энергии, срок их службы был ограничен, а контраст изображения был удручающим. На суд общественности новый ЖК-дисплей был представлен в 1971 году и тогда он получил горячее одобрение. Жидкие кристаллы (Liquid Crystal) - это органические вещества, способные под напряжением изменять величину пропускаемого света. Жидкокристаллический монитор представляет собой две стеклянных или пластиковых пластины, между которыми находится суспензия. Кристаллы в этой суспензии расположены параллельно по отношению друг к другу, тем самым они позволяют свету проникать через панель. При подаче электрического тока расположение кристаллов изменяется, и они начинают препятствовать прохождению света. ЖК технология получила широкое распространение в компьютерах и в проекционном оборудовании.

Отметим, что первые жидкие кристаллы отличались своей нестабильностью и были мало пригодными к массовому производству. Реальное развитие ЖК технологии началось с изобретением английскими учеными стабильного жидкого кристалла - бифенила (Biphenyl). Жидкокристаллические дисплеи первого поколения можно наблюдать в калькуляторах, электронных играх и в часах.

Насладимся плоским экраном

Современные ЖК мониторы также называют плоскими панелями, активными матрицами двойного сканирования, тонкопленочными транзисторами. Идея ЖК мониторов витала в воздухе более 30 лет, но проводившиеся исследования не приводили к приемлемому результату, поэтому ЖК мониторы не завоевали репутации устройств, обеспечивающих хорошее качество изображения. Сейчас они становятся популярными - всем нравится их изящный вид, тонкий стан, компактность, экономичность (15-30 ватт), кроме того, считается, что только обеспеченные и серьезные люди могут позволить себе такую роскошь.

Время идет, цены падают, а ЖК мониторы становятся все лучше и лучше. Теперь они обеспечивают качественное контрастное, яркое, отчетливое изображение. Именно по этой причине пользователи переходят с традиционных ЭЛТ-мониторов на жидкокристаллические. Раньше жидкокристаллические технологии были медленнее, они не были настолько эффективными, и их уровень контрастности был низок. Первые матричные технологии, так называемые пассивные матрицы, вполне неплохо работали с текстовой информацией, но при резкой смене картинки на экране оставались так называемые "призраки". Поэтому такого рода устройства не подходили для просмотра видеофильмов и игр. Сегодня на пассивных матрицах работает большинство черно-белых портативных компьютеров, пейджеры и мобильные телефоны. Так как ЖК технология адресует каждый пиксель отдельно, четкость получаемого текста выше в сравнении с ЭЛТ-монитором. Отметим, что на ЭЛТ-мониторах при плохом сведении лучей пиксели, из которых состоит изображение, размываются.

Существует два вида ЖК мониторов: DSTN (dual-scan twisted nematic - кристаллические экраны с двойным сканированием) и TFT (thin film transistor - на тонкопленочных транзисторах), также их называют соответственно пассивными и активными матрицами. Такие мониторы состоят из следующих слоев: поляризующего фильтра, стеклянного слоя, электрода, слоя управления, жидких кристаллов, ещё одного слоя управления, электрода, слоя стекла и поляризующего фильтра.

В первых компьютерах использовались восьмидюймовые (по диагонали) пассивные черно-белые матрицы. С переходом на технологию активных матриц, размер экрана вырос. Практически все современные ЖК мониторы используют панели на тонкопленочных транзисторах, обеспечивающих яркое, четкое изображение значительно большего размера.

Как работает ЖК монитор


Поперечное сечение панели на тонкопленочных транзисторах представляет собой многослойный бутерброд. Крайний слой любой из сторон выполнен из стекла. Между этими слоями расположен тонкопленочный транзистор, панель цветного фильтра, обеспечивающая нужный цвет - красный, синий или зеленый, и слой жидких кристаллов. Вдобавок ко всему существует флуоресцентная подсветка, освещающая экран изнутри.

При нормальных условиях, когда нет электрического заряда, жидкие кристаллы находятся в аморфном состоянии. В этом состоянии жидкие кристаллы пропускают свет. Количеством света, проходящего через жидкие кристаллы, можно управлять с помощью электрических зарядов - при этом изменяется ориентация кристаллов.

Как и в традиционных электроннолучевых трубках, пиксель формируется из трех участков - красного, зеленого и синего. А различные цвета получаются в результате изменения величины соответствующего электрического заряда (что приводит к повороту кристалла и изменению яркости проходящего светового потока).

TFT экран состоит из целой сетки таких пикселей, где работой каждого цветового участка каждого пикселя управляет отдельный транзистор. Именно здесь стоит поговорить о разрешении. Для нормального обеспечения экранного разрешения 1024х768 (режим SVGA) монитор должен располагать именно таким количеством пикселей.

Почему именно ЖК?

Жидкокристаллические мониторы обладают совершенно иным стилем. В традиционных электроннолучевых мониторах формообразующим фактором был кинескоп. Его размер и форму нельзя было изменять. В ЖК мониторах кинескопа нет, поэтому можно производить мониторы любой формы.

Сравните 15-дюймовый ЭЛТ-монитор весом 15 кг с жидкокристаллической панелью глубиной (вместе с подставкой) менее 15 см и весом 5-6 кг. Преимущества таких мониторов понятны. Они не такие громоздкие, не имеют проблем с фокусировкой, а их четкость облегчает работу на высоких разрешениях экрана, пусть даже его размер не так велик. Например, даже 17-дюймовый жидкокристаллический монитор прекрасно показывает в разрешении 1280х1024, тогда как даже для 18-дюймовых ЭЛТ-мониторов это предел. К тому же, в отличие от ЭЛТ-мониторов, большинство ЖК - цифровые. Это означает, что графической карте с цифровым выходом не придется производить цифроаналоговые преобразования, какие она производит в случае с ЭЛТ-монитором. Теоретически, это позволяет более тщательно передавать информацию о цвете и о местоположении пикселя. В то же время, если подключать ЖК монитор к стандартному аналоговому VGA выходу, придется проводить аналого-цифровые преобразования (ведь ЖК-панели - это цифровые устройства). При этом могут возникнуть различные нежелательные артефакты. Теперь, когда приняты соответствующие стандарты и все большее количество карт обеспечивается цифровыми выходами, ситуация значительно упростится.

Преимущества ЖК мониторов

  • ЖК мониторы более экономичные;
  • У них нет электромагнитного излучения в сравнении c ЭЛТ-мониторами;
  • Они не мерцают, как ЭЛТ-мониторы;
  • Они легкие и не такие объемные;
  • У них большая видимая область экрана.
Среди других отличий:

Разрешение: ЭЛТ-мониторы могут работать на нескольких разрешениях в полноэкранном режиме, когда ЖК монитор может работать только с одним разрешением. Меньшие разрешения возможны лишь при использовании части экрана. Так, например, на мониторе с разрешением 1024х768 при работе в разрешении 640х480 будет задействовано лишь 66% экрана.

Измерение диагонали: размер диагонали видимой области ЖК монитора соответствует размеру его реальной диагонали. В ЭЛТ-мониторах реальная диагональ теряет за рамкой монитора более дюйма.

Сведение лучей: в жидкокристаллических мониторах каждый пиксель включается или выключается отдельно, поэтому не возникает никаких проблем со сведением лучей, в отличие от ЭЛТ-мониторов, где требуется безукоризненная работа электронных пушек.

Сигналы: ЭЛТ-мониторы работают на аналоговых сигналах, а ЖК мониторы используют цифровые сигналы.

Отсутствие мерцания: качество изображения на ЖК мониторах выше, а при работе нагрузка на глаза меньше - сказывается ровная плоскость экрана и отсутствие мерцания.

Как выбирать ЖК монитор?

"Внешность обманчива" - это высказывание применимо ко всему, включая и жидкокристаллические мониторы. Большинство неопытных покупателей делают свой выбор под влиянием внешности монитора. При покупке монитора в первую очередь стоит учитывать следующее.

"Мертвые пиксели" - на плоской панели может не работать несколько пикселей. Распознать их нетрудно - они всегда одного цвета. Они возникают в процессе производства и восстановлению не подлежат. Приемлемым считается, когда в мониторе не более трех таких пикселей. В некоторых случаях, такие пиксели могут раздражать - особенно при просмотре фильмов. Поэтому если для вас критично отсутствие мертвых пикселей, перед покупкой конкретного монитора проверьте его.

Угол просмотра - Если вы когда-либо ранее пользовались ноутбуком, вы, вероятнее всего, знаете, что работать за ЖК монитором лучше всего под определенным углом. У некоторых мониторов значение этого угла довольно велико, таким образом вы можете видеть изображение на мониторе даже в тех случаях, когда монитор не находится непосредственно перед вами. Отметим, что некоторые владельцы ноутбуков находят небольшие значения угла полезными - в тех случаях, когда требуется, чтобы ваш сосед не видел, что происходит на экране вашего монитора. Итак, угол в 120 градусов считается неплохим.

Контрастность - сами по себе пиксели не вырабатывают свет, они лишь пропускают свет от подсветки. И темный экран вовсе не означает, что подсветка не работает - просто пиксели блокируют этот свет и не пропускают его сквозь экран. Под контрастностью LCD монитора подразумевается, сколько уровней яркости могут создавать его пикселы. Обычно, контрастность 250:1 считается хорошей.

Яркость - насколько ярким может быть ЖК монитор? По правде сказать, яркость жидкокристаллического дисплея может быть выше яркости электронно-лучевой трубки. Но, как правило, яркость ЖК монитора не превышает 225 кандел на квадратный метр - это сопоставимо с яркостью телевизора.

Размер экрана - как и у ЭЛТ-мониторов, размер ЖК мониторов определяются диагональю. Однако заметим, что у ЖК мониторов нет черной рамочки, какая имеется у ЭЛТ-мониторов. Поэтому экран в 15,1 дюйма на самом деле показывает 15,1 дюйма (обычно это соответствует разрешению 1024х768). ЖК монитор размером 17,1 дюйма будет работать в разрешении 1280х1024.

Как выбирать ЖК монитор?

Существует множество различных производителей ЖК мониторов. Наиболее известны мониторы Viewsonic, Sony, Silicon Graphics, Samsung, Nec, Eizo Nano и Apple. Обычно за такими мониторами сидят крутые ребята. Обратите, ни один современный фильм не обходится без ЖК мониторов - ведь они так привлекательны. Вспомнить, к примеру, последние боевики: Лару Крофт из "Томб Райдера" окружали Sony N50, а в "Рыбе-меч" в компьютерной комнате использовались Silicon Graphics 1600SW. Разве они не выглядят привлекательно?


выглядят хорошо, легко, очень тонкий (всего 1,2 см) - 15"


Толщиной лишь 1,2 см, красивы, дороги, качественная картинка, и вообще, вещь - загляденье - 18"


Viewsonic VP181 - дорогой, имеет входы-выходы для TV, VCD, DBD, кроме того, встроенный колонки - 18";
Apple Cinema Display - отличаются высоким разрешением, имеют большой экран, отличаются дизайном - 22";
Sony M81 - тонкие, но на самом деле выглядят несколько иначе, не так, как на этом рисунке - 18"


SGI 1600SW - отличаются дизайном, превосходными характеристиками, дорогие - 17";
Sony L181 - очень тонкие, очень дорогие, но используют технологию Trinitron - 18";
Eizo Nano - выглядят изящно, дорогие - 18"

Андрей Борзенко

Эксперты прогнозируют, что буквально через несколько лет устройства отображения на базе электронно-лучевых трубок (ЭЛТ) займут свое почетное место в музее истории техники. На смену им придут так называемые плоские дисплеи (Flat Panel Display, FPD). Для создания плоских дисплеев используются различные технологии, однако более половины рынка FPD занимают жидкокристаллические экраны с активной матрицей (Active-Matrix Liquid Crystal Display, AM-LCD). Принцип их работы хорошо известен. Под действием электрического поля молекулы жидких кристаллов меняют плоскость поляризации проходящего через них света. Иными словами, LCD-ячейка отражает или не отражает свет.

Устойчиво доминируют подобные устройства и на компьютерном рынке. В течение нескольких ближайших лет эта тенденция, видимо, сохранится.

Жидкокристаллические мониторы

По оценкам фирмы Display Research, в III квартале 1998 г. было продано около 50 тыс. LCD-мониторов (напомним, что объем рынка ЭЛТ-устройств оценивается в 80 - 85 млн. единиц). Наиболее популярными считаются 15-дюймовые мониторы - 39% рынка, за ними следуют 14-дюймовые - 26%, а высококачественные 16-дюймовые занимают только 10%. До настоящего времени наиболее существенным недостатком AM-LCD-устройств остается их высокая цена. Но ситуация меняется буквально на глазах. Вот, например, как снижалась стоимость 15-дюймовой модели VPA150 корпорации ViewSonic (www.viewsonic.com): в начале прошлого года - $2200, весной - $1500, в начале осени - $1200. Сейчас некоторые 15-дюймовые мониторы стали дешевле $1000. Так, рекомендованная розничная цена 15-дюймового мультимедийного монитора PanaFlat LCD50s компании Panasonic Computer Peripheral (www.panasonic.com) составляет $999. Он снабжен портом USB и встроенными одноваттными стереодинамиками. Экран обеспечивает яркость не менее 250 нит при контрасте 200:1. Угол обзора - 140 градусов.

Будущее за плоскими дисплеями

Ситуация с ценами должна измениться радикальным образом в начале 2000 г., когда на Тайване на полную мощность заработают несколько новых заводов по производству LCD.

На выставке COMDEX’98 практически все ведущие производители экранов и мониторов представили новые продукты, основанные на AM-LCD. Особый интерес вызвали 18-дюймовые устройства, например, компаний Acer (www.acer.com), Eizo (www.eizo.com), NEC (www.nec.com), Nokia (www.nokia.com) и др. Отметим, что экран 18-дюймового LCD-монитора соответствует видимой области 21-дюймового устройства с ЭЛТ. Так, 18,1-дюймовая модель 800Xi корпорации Nokia (www.nokia.com) позволяет получить яркость не менее 250 нит при контрасте 200:1. Угол обзора у нее составляет 170 градусов. Цены при этом варьируются в довольно широких пределах: от 2500 долл. у Acer до $3600 у NEC.

Корпорация Samsung Electronics (www.samsungelectronics.com) представила на COMDEX’98 улучшенные версии 15- и 17-дюймовых мультимедийных мониторов SyncMaster. При толщине всего в 2,5 дюйма и контрасте 150:1 они обеспечивают яркость 200 нит и угол обзора 120 градусов. Данные устройства позволяют масштабировать изображение на экране с коэффициентами 2, 4 и 8. Весной ожидается появление мониторов с размером экрана 18 и более дюймов.

А вот корпорация Compaq (www.compaq.com) продемонстрировала 15-дюймовую LCD-модель с цифровым интерфейсом, удовлетворяющим спецификации VESA. Эта продукция будет предлагаться в составе домашних компьютеров Presario.

Дальнейшее развитие LCD связывают с повышением четкости и яркости изображения, увеличением угла обзора и уменьшением толщины экрана. Так, на стенде корпорации Toshiba (www.toshiba.com) можно было увидеть новый LCD-монитор, при изготовлении которого использовался поликристаллический кремний. Эта технология позволяет размещать микросхемы управления непосредственно на стеклянной подложке дисплея и в результате создавать очень тонкие устройства. Кроме того, обеспечивается высокая разрешающая способность на сравнительно небольшом по размеру экране. Так, на 10,4-дюймовом AM-LCD достигается разрешение 1024х768 точек.

Жидкокристаллический дисплей Panasonic LC90S

Между прочим, максимальные размеры LCD-экранов, которые целесообразно выпускать промышленным способом, не превышают 20 дюймов (хотя корпорация Sharp, www.sharp.co.jp, в свое время показала 40-дюймовый LCD-монитор с экраном, полученным путем соединения двух 29-дюймовых панелей). Дело в том, что буквально год назад выход годных 10,4-дюймовых экранов составлял всего 60 - 70%, и фирмы ставили перед собой цель достичь показателя 80 - 85%. Заметим, что с увеличением размеров экрана увеличивается и процент брака.

Плазменные дисплеи

Традиционно на рынке больших экранов (20 дюймов и выше) преобладают так называемые плазменные дисплеи (Plasma Display Panel, PDP). Исследования и разработки в этой области начались еще в начале 60-х годов. Стоит напомнить, что монохромные PDP-экраны использовались даже в некоторых переносных компьютерах. Цветные PDP-дисплеи сегодня выпускают такие компании, как Panasonic, Mitsubishi, Pioneer, NEC. Лидером в данном секторе рынка заслуженно считается корпорация Fujitsu (www.fujitsu.com). Для повышения качества изображения и уменьшения цены ею, в частности, разработана специальная технология Alternate Lighting of Surfaces (ALiS). Это позволило повысить яркость PDP-экранов до 500 нит, контраст - до 400:1, а угол обзора - до 160 градусов. Готовые PDP-панели Fujitsu используют корпорации Grundig и Philips для создания домашних театров.

PDP-устройства во многом напоминают двухэлектродную вакуумную трубку. Инертный газ (аргон или неон) ионизируется между двумя прозрачными электродами. Электрически заряженный газ (плазма) дает ультрафиолетовое излучение, которое возбуждает капельки фосфора. Последние и излучают видимый свет.

PDP-дисплей Panasonic PT-42P

Цветные PDP-устройства хорошо подходят для создания цифровых телевизоров высокой четкости, однако цена их еще довольно высока: 42-дюймовый дисплей стоит 8 - 15 тыс. долл.

Довольно интересный симбиоз жидкокристаллической и плазменной технологий реализовала компания Tektronix (www.tek.com). Она предложила использовать плазму для управления строками и столбцами LCD-экрана. Впоследствии лицензию на эту технологию приобрела корпорация Sony (www.sony.com), которая в содружестве с фирмой Sharp должна была начать производство подобных устройств. По отзывам специалистов Sony, новый подход позволяет создавать дисплеи с малым временем отклика, хорошей яркостью и высокой разрешающей способностью.

DLP-устройства

Дисплеи, созданные на основе технологии Digital Light Processing (DLP), разработанной компанией Texas Instruments (www.ti.com), особенно широко используются в военном деле: экраны для шлемов, кабин самолетов, командных центров и т. п. В основе DLP-технологии лежит DMD-ячейка (Digital Micromirror Device). По сути это структура, состоящая из ячейки статической памяти и микроскопического алюминиевого зеркальца, которое может поворачиваться в две стороны на угол 10 градусов. В зависимости от своего положения зеркало отражает или не отражает свет от внешнего источника, результат проецируется на большой экран.

FED-устройства

Много внимания некоторые фирмы сейчас стали уделять созданию дисплеев на базе автоэлектронной эмиссии (Field Emisson Display, FED). В отличие от LCD- и DMD-экранов, работающих с отраженным светом, FED-панели сами генерируют свет, что роднит их с ЭЛТ и плазменными дисплеями. Однако в отличие от ЭЛТ, имеющих всего три электронные пушки, в FED-устройствах каждому пикселу предназначен свой электрод, благодаря чему толщина панели не превышает нескольких миллиметров. Пикселы управляются напрямую, как в AM-LCD.

Над созданием FED-мониторов в настоящее время работают несколько крупных компаний: PixTech (www.pixtech.com), Candescent Technologies (www.candescent.com), Motorola (www.motorola.com), Raytheon (www.raytheon.com).

PixTech уже выпускает цветные 8,5- и 15-дюймовые FED-панели с разрешающей способностью VGA-монитора и углом обзора 160 градусов.

Корпорация Candescent Technologies ускоренными темпами ведет подготовку производства, причем называет свою технологию FED-устройств ThinCRT (“тонкая” ЭЛТ). Инвесторами корпорации являются такие компании, как Hewlett-Packard, Sony и Compaq. Одна из проблем, с которой сталкиваются производители FED-панелей, состоит в том, что между двумя пластинами стекла, разделенными узкой щелью, должно создаваться разрежение (т. е. откачан воздух). Но в таком случае пластины начинают притягиваться друг к другу, а этого необходимо избежать. Новая технология Candescent Technologies защищена как минимум тремя десятками патентов. Производственные мощности компании позволят к 2001 г. произвести около миллиона 14,1-дюймовых FED-экранов.

Фирма Motorola реализует практически не афишируемый в прессе проект, в соответствии с которым она полностью переоснастила свой завод в Аризоне (США), ориентировав его на производство FED-устройств. Первая продукция должна появиться уже в начале следующего года.

Электролюминесцентные дисплеи

Менее интенсивно развивается производство плоских дисплеев, основанных на электролюминесцентной (ElectroLuminescent, EL) технологии. О том, что некоторые вещества (например, сульфид цинка) при прохождении через них тока приобретают способность излучать видимый свет, известно еще с 1937 г. Однако практическое применение в изготовлении плоских дисплеев этот эффект получил спустя почти 50 лет, когда появились тонкопленочные EL-материалы. По мнению ряда специалистов, EL-дисплеи имеют ряд преимуществ перед LCD- и даже FED-устройствами. Это касается как разрешающей способности, так и контраста, угла обзора и даже энергопотребления. Тем не менее ведущий производитель EL-панелей компания Planar Systems (www.planar.com) свою продукцию пока поставляет преимущественно для различного медицинского оборудования.

LEP-дисплеи

Недавно появилось сообщение, что британская компания Cambridge Display Technology (CDT), которая плотно сотрудничает с японской корпорацией Seiko-Epson, продемонстрировала монохромный дисплей с разрешающей способностью 800х236 точек на основе светоизлучающей полимерной пленки (Light-Emitting Polymer, LEP). Каждым пикселом в LEP-дисплее, как и в AM-LCD, управляет тонкопленочный транзистор. Для нанесения полимерного слоя на транзисторную матрицу использовался струйный метод печати Epson. В начале следующего года CDT обещает выпустить цветной LEP-дисплей.

В таблице приведены технические характеристики LCD-мониторов, предлагаемых на российском рынке.

Жидкокристаллические мониторы на российском рынке

Фирма- производитель

Адрес Web-узла

Размер диагонали экрана, дюймов

Размер точки, мм

Яркость, кд/м^2 (нит)

Контраст

Угол обзора по горизонтали, градусов

Угол обзора по вертикали, градусов

Максимальное разрешение, точек

Количество воспроизводимых цветов

Полоса пропускания сигнала, МГц

Частота горизонтальной развертки, кГц

Частота вертикальной развертки, Гц

Поддержка plug and play

Наличие встроенных акустических систем

Тип видеосигнала

Потребление энергии, Вт

Размеры, мм

Samsung Electronics

SyncMaster 500 TFT

Аналоговый

Нет данных

Samsung Electronics

SyncMaster 520 TFT

Аналоговый

Нет данных

Samsung Electronics

SyncMaster 700 TFT

Аналоговый

Нет данных

Аналоговы

3,5 (без подставки)

Аналоговый

390х85х345 (плюс подставка)

Аналоговый

446х83х432 (плюс подставка)

www.maginnovision.com

Нет данных

Нет данных

Аналоговый

www.maginnovision.com

Нет данных

Нет данных

Нет данных

Нет данных

Аналоговый

MultiSync LCD400V

Нет данных

Нет данных

Аналоговый

Нет данных

MultiSync LCD1510

Нет данных

Аналоговый

Нет данных

MultiSync LCD2000

Аналоговый

Нет данных

Аналоговый

Нет данных

Нет данных

Нет данных

Аналоговый

www.panasonic.ru

Нет данных

Аналоговый

www.panasonic.ru

Аналоговый

Нет данных

Нет данных

Нет данных

Нет данных

Аналоговый

www.mitsubishi-display.com

Аналоговый

www.mitsubishi-display.com

Аналоговый

www.viewsonic.com

Нет данных

Нет данных

Аналоговый

Нет данных

www.viewsonic.com

Нет данных

Нет данных

Цифровой

www.viewsonic.com

Нет данных

Цифровой

Studioworks 500LC

Нет данных

Аналоговый

Studioworks 800LC

Нет данных

Аналоговый

Нет данных

Нет данных

Brilliance 151AX

www.monitors.philips.com

Нет данных

Аналоговый

Нет данных

Нет данных

Нет данных

Нет данных

Нет данных

Аналоговый